There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ 1680xsin({x}^{2}) + 3360{x}^{3}cos({x}^{2}) - 1344{x}^{5}sin({x}^{2}) - 128{x}^{7}cos({x}^{2})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 1680xsin(x^{2}) + 3360x^{3}cos(x^{2}) - 1344x^{5}sin(x^{2}) - 128x^{7}cos(x^{2})\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 1680xsin(x^{2}) + 3360x^{3}cos(x^{2}) - 1344x^{5}sin(x^{2}) - 128x^{7}cos(x^{2})\right)}{dx}\\=&1680sin(x^{2}) + 1680xcos(x^{2})*2x + 3360*3x^{2}cos(x^{2}) + 3360x^{3}*-sin(x^{2})*2x - 1344*5x^{4}sin(x^{2}) - 1344x^{5}cos(x^{2})*2x - 128*7x^{6}cos(x^{2}) - 128x^{7}*-sin(x^{2})*2x\\=&1680sin(x^{2}) + 13440x^{2}cos(x^{2}) - 13440x^{4}sin(x^{2}) - 3584x^{6}cos(x^{2}) + 256x^{8}sin(x^{2})\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!