本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数1680xsin({x}^{2}) + 3360{x}^{3}cos({x}^{2}) - 1344{x}^{5}sin({x}^{2}) - 128{x}^{7}cos({x}^{2}) 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = 1680xsin(x^{2}) + 3360x^{3}cos(x^{2}) - 1344x^{5}sin(x^{2}) - 128x^{7}cos(x^{2})\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( 1680xsin(x^{2}) + 3360x^{3}cos(x^{2}) - 1344x^{5}sin(x^{2}) - 128x^{7}cos(x^{2})\right)}{dx}\\=&1680sin(x^{2}) + 1680xcos(x^{2})*2x + 3360*3x^{2}cos(x^{2}) + 3360x^{3}*-sin(x^{2})*2x - 1344*5x^{4}sin(x^{2}) - 1344x^{5}cos(x^{2})*2x - 128*7x^{6}cos(x^{2}) - 128x^{7}*-sin(x^{2})*2x\\=&1680sin(x^{2}) + 13440x^{2}cos(x^{2}) - 13440x^{4}sin(x^{2}) - 3584x^{6}cos(x^{2}) + 256x^{8}sin(x^{2})\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!