There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {(sin(x))}^{2} + {(cos(x))}^{2} + {({({(sin(x))}^{2} - {(cos(x))}^{2})}^{2} + {(sin(2)x)}^{2})}^{\frac{1}{2}}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = sin^{2}(x) + cos^{2}(x) + (-2sin^{2}(x)cos^{2}(x) + sin^{4}(x) + cos^{4}(x) + x^{2}sin^{2}(2))^{\frac{1}{2}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( sin^{2}(x) + cos^{2}(x) + (-2sin^{2}(x)cos^{2}(x) + sin^{4}(x) + cos^{4}(x) + x^{2}sin^{2}(2))^{\frac{1}{2}}\right)}{dx}\\=&2sin(x)cos(x) + -2cos(x)sin(x) + (\frac{\frac{1}{2}(-2*2sin(x)cos(x)cos^{2}(x) - 2sin^{2}(x)*-2cos(x)sin(x) + 4sin^{3}(x)cos(x) + -4cos^{3}(x)sin(x) + 2xsin^{2}(2) + x^{2}*2sin(2)cos(2)*0)}{(-2sin^{2}(x)cos^{2}(x) + sin^{4}(x) + cos^{4}(x) + x^{2}sin^{2}(2))^{\frac{1}{2}}})\\=&\frac{-4sin(x)cos^{3}(x)}{(-2sin^{2}(x)cos^{2}(x) + sin^{4}(x) + cos^{4}(x) + x^{2}sin^{2}(2))^{\frac{1}{2}}} + \frac{4sin^{3}(x)cos(x)}{(-2sin^{2}(x)cos^{2}(x) + sin^{4}(x) + cos^{4}(x) + x^{2}sin^{2}(2))^{\frac{1}{2}}} + \frac{xsin^{2}(2)}{(-2sin^{2}(x)cos^{2}(x) + sin^{4}(x) + cos^{4}(x) + x^{2}sin^{2}(2))^{\frac{1}{2}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!