There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ 1.13920703x - 0.392070132{\frac{1}{x}}^{2} - \frac{3sin(ln(x))}{10} - \frac{cos(ln(x))}{10}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 1.13920703x - \frac{0.392070132}{x^{2}} - 0.3sin(ln(x)) - 0.1cos(ln(x))\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 1.13920703x - \frac{0.392070132}{x^{2}} - 0.3sin(ln(x)) - 0.1cos(ln(x))\right)}{dx}\\=&1.13920703 - \frac{0.392070132*-2}{x^{3}} - \frac{0.3cos(ln(x))}{(x)} - \frac{0.1*-sin(ln(x))}{(x)}\\=& - \frac{0.3cos(ln(x))}{x} + \frac{0.1sin(ln(x))}{x} + \frac{0.784140264}{x^{3}} + 1.13920703\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( - \frac{0.3cos(ln(x))}{x} + \frac{0.1sin(ln(x))}{x} + \frac{0.784140264}{x^{3}} + 1.13920703\right)}{dx}\\=& - \frac{0.3*-cos(ln(x))}{x^{2}} - \frac{0.3*-sin(ln(x))}{x(x)} + \frac{0.1*-sin(ln(x))}{x^{2}} + \frac{0.1cos(ln(x))}{x(x)} + \frac{0.784140264*-3}{x^{4}} + 0\\=& - \frac{-0.3cos(ln(x))}{x^{2}} + \frac{0.3sin(ln(x))}{x^{2}} - \frac{0.1sin(ln(x))}{x^{2}} + \frac{0.1cos(ln(x))}{x^{2}} - \frac{2.352420792}{x^{4}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!