本次共计算 1 个题目:每一题对 x 求 2 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数1.13920703x - 0.392070132{\frac{1}{x}}^{2} - \frac{3sin(ln(x))}{10} - \frac{cos(ln(x))}{10} 关于 x 的 2 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = 1.13920703x - \frac{0.392070132}{x^{2}} - 0.3sin(ln(x)) - 0.1cos(ln(x))\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( 1.13920703x - \frac{0.392070132}{x^{2}} - 0.3sin(ln(x)) - 0.1cos(ln(x))\right)}{dx}\\=&1.13920703 - \frac{0.392070132*-2}{x^{3}} - \frac{0.3cos(ln(x))}{(x)} - \frac{0.1*-sin(ln(x))}{(x)}\\=& - \frac{0.3cos(ln(x))}{x} + \frac{0.1sin(ln(x))}{x} + \frac{0.784140264}{x^{3}} + 1.13920703\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( - \frac{0.3cos(ln(x))}{x} + \frac{0.1sin(ln(x))}{x} + \frac{0.784140264}{x^{3}} + 1.13920703\right)}{dx}\\=& - \frac{0.3*-cos(ln(x))}{x^{2}} - \frac{0.3*-sin(ln(x))}{x(x)} + \frac{0.1*-sin(ln(x))}{x^{2}} + \frac{0.1cos(ln(x))}{x(x)} + \frac{0.784140264*-3}{x^{4}} + 0\\=& - \frac{-0.3cos(ln(x))}{x^{2}} + \frac{0.3sin(ln(x))}{x^{2}} - \frac{0.1sin(ln(x))}{x^{2}} + \frac{0.1cos(ln(x))}{x^{2}} - \frac{2.352420792}{x^{4}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!