There are 4 questions in this calculation: for each question, the 4 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/4]Find\ the\ 4th\ derivative\ of\ function\ sin(x) + cos(x)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( sin(x) + cos(x)\right)}{dx}\\=&cos(x) + -sin(x)\\=&cos(x) - sin(x)\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( cos(x) - sin(x)\right)}{dx}\\=&-sin(x) - cos(x)\\=&-sin(x) - cos(x)\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( -sin(x) - cos(x)\right)}{dx}\\=&-cos(x) - -sin(x)\\=&-cos(x) + sin(x)\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( -cos(x) + sin(x)\right)}{dx}\\=&--sin(x) + cos(x)\\=&sin(x) + cos(x)\\ \end{split}\end{equation} \]\[ \begin{equation}\begin{split}[2/4]Find\ the\ 4th\ derivative\ of\ function\ sin(x) - cos(x)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( sin(x) - cos(x)\right)}{dx}\\=&cos(x) - -sin(x)\\=&cos(x) + sin(x)\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( cos(x) + sin(x)\right)}{dx}\\=&-sin(x) + cos(x)\\=&-sin(x) + cos(x)\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( -sin(x) + cos(x)\right)}{dx}\\=&-cos(x) + -sin(x)\\=&-cos(x) - sin(x)\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( -cos(x) - sin(x)\right)}{dx}\\=&--sin(x) - cos(x)\\=&sin(x) - cos(x)\\ \end{split}\end{equation} \]\[ \begin{equation}\begin{split}[3/4]Find\ the\ 4th\ derivative\ of\ function\ sin(x)cos(x)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( sin(x)cos(x)\right)}{dx}\\=&cos(x)cos(x) + sin(x)*-sin(x)\\=&cos^{2}(x) - sin^{2}(x)\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( cos^{2}(x) - sin^{2}(x)\right)}{dx}\\=&-2cos(x)sin(x) - 2sin(x)cos(x)\\=&-4sin(x)cos(x)\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( -4sin(x)cos(x)\right)}{dx}\\=&-4cos(x)cos(x) - 4sin(x)*-sin(x)\\=&-4cos^{2}(x) + 4sin^{2}(x)\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( -4cos^{2}(x) + 4sin^{2}(x)\right)}{dx}\\=&-4*-2cos(x)sin(x) + 4*2sin(x)cos(x)\\=&16sin(x)cos(x)\\ \end{split}\end{equation} \]\[ \begin{equation}\begin{split}[4/4]Find\ the\ 4th\ derivative\ of\ function\ tan(x)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( tan(x)\right)}{dx}\\=&sec^{2}(x)(1)\\=&sec^{2}(x)\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( sec^{2}(x)\right)}{dx}\\=&2sec^{2}(x)tan(x)\\=&2tan(x)sec^{2}(x)\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( 2tan(x)sec^{2}(x)\right)}{dx}\\=&2sec^{2}(x)(1)sec^{2}(x) + 2tan(x)*2sec^{2}(x)tan(x)\\=&2sec^{4}(x) + 4tan^{2}(x)sec^{2}(x)\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( 2sec^{4}(x) + 4tan^{2}(x)sec^{2}(x)\right)}{dx}\\=&2*4sec^{4}(x)tan(x) + 4*2tan(x)sec^{2}(x)(1)sec^{2}(x) + 4tan^{2}(x)*2sec^{2}(x)tan(x)\\=&16tan(x)sec^{4}(x) + 8tan^{3}(x)sec^{2}(x)\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!