There are 3 questions in this calculation: for each question, the 4 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/3]Find\ the\ 4th\ derivative\ of\ function\ 2{cos(x)}^{2} - 1\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 2cos^{2}(x) - 1\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 2cos^{2}(x) - 1\right)}{dx}\\=&2*-2cos(x)sin(x) + 0\\=&-4sin(x)cos(x)\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( -4sin(x)cos(x)\right)}{dx}\\=&-4cos(x)cos(x) - 4sin(x)*-sin(x)\\=&-4cos^{2}(x) + 4sin^{2}(x)\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( -4cos^{2}(x) + 4sin^{2}(x)\right)}{dx}\\=&-4*-2cos(x)sin(x) + 4*2sin(x)cos(x)\\=&16sin(x)cos(x)\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( 16sin(x)cos(x)\right)}{dx}\\=&16cos(x)cos(x) + 16sin(x)*-sin(x)\\=&16cos^{2}(x) - 16sin^{2}(x)\\ \end{split}\end{equation} \]\[ \begin{equation}\begin{split}[2/3]Find\ the\ 4th\ derivative\ of\ function\ {cos(x)}^{2} - {sin(x)}^{2}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = cos^{2}(x) - sin^{2}(x)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( cos^{2}(x) - sin^{2}(x)\right)}{dx}\\=&-2cos(x)sin(x) - 2sin(x)cos(x)\\=&-4sin(x)cos(x)\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( -4sin(x)cos(x)\right)}{dx}\\=&-4cos(x)cos(x) - 4sin(x)*-sin(x)\\=&-4cos^{2}(x) + 4sin^{2}(x)\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( -4cos^{2}(x) + 4sin^{2}(x)\right)}{dx}\\=&-4*-2cos(x)sin(x) + 4*2sin(x)cos(x)\\=&16sin(x)cos(x)\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( 16sin(x)cos(x)\right)}{dx}\\=&16cos(x)cos(x) + 16sin(x)*-sin(x)\\=&16cos^{2}(x) - 16sin^{2}(x)\\ \end{split}\end{equation} \]\[ \begin{equation}\begin{split}[3/3]Find\ the\ 4th\ derivative\ of\ function\ 1 - 2{sin(x)}^{2}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = - 2sin^{2}(x) + 1\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( - 2sin^{2}(x) + 1\right)}{dx}\\=& - 2*2sin(x)cos(x) + 0\\=& - 4sin(x)cos(x)\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( - 4sin(x)cos(x)\right)}{dx}\\=& - 4cos(x)cos(x) - 4sin(x)*-sin(x)\\=& - 4cos^{2}(x) + 4sin^{2}(x)\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( - 4cos^{2}(x) + 4sin^{2}(x)\right)}{dx}\\=& - 4*-2cos(x)sin(x) + 4*2sin(x)cos(x)\\=&16sin(x)cos(x)\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( 16sin(x)cos(x)\right)}{dx}\\=&16cos(x)cos(x) + 16sin(x)*-sin(x)\\=&16cos^{2}(x) - 16sin^{2}(x)\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!