There are 4 questions in this calculation: for each question, the 3 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/4]Find\ the\ third\ derivative\ of\ function\ {x}^{x}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {x}^{x}\right)}{dx}\\=&({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)}))\\=&{x}^{x}ln(x) + {x}^{x}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( {x}^{x}ln(x) + {x}^{x}\right)}{dx}\\=&({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)}))ln(x) + \frac{{x}^{x}}{(x)} + ({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)}))\\=&{x}^{x}ln^{2}(x) + 2{x}^{x}ln(x) + \frac{{x}^{x}}{x} + {x}^{x}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( {x}^{x}ln^{2}(x) + 2{x}^{x}ln(x) + \frac{{x}^{x}}{x} + {x}^{x}\right)}{dx}\\=&({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)}))ln^{2}(x) + \frac{{x}^{x}*2ln(x)}{(x)} + 2({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)}))ln(x) + \frac{2{x}^{x}}{(x)} + \frac{-{x}^{x}}{x^{2}} + \frac{({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)}))}{x} + ({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)}))\\=&{x}^{x}ln^{3}(x) + 3{x}^{x}ln^{2}(x) + \frac{3{x}^{x}ln(x)}{x} + 3{x}^{x}ln(x) + \frac{3{x}^{x}}{x} - \frac{{x}^{x}}{x^{2}} + {x}^{x}\\ \end{split}\end{equation} \]\[ \begin{equation}\begin{split}[2/4]Find\ the\ third\ derivative\ of\ function\ {x}^{(2x)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {x}^{(2x)}\right)}{dx}\\=&({x}^{(2x)}((2)ln(x) + \frac{(2x)(1)}{(x)}))\\=&2{x}^{(2x)}ln(x) + 2{x}^{(2x)}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 2{x}^{(2x)}ln(x) + 2{x}^{(2x)}\right)}{dx}\\=&2({x}^{(2x)}((2)ln(x) + \frac{(2x)(1)}{(x)}))ln(x) + \frac{2{x}^{(2x)}}{(x)} + 2({x}^{(2x)}((2)ln(x) + \frac{(2x)(1)}{(x)}))\\=&4{x}^{(2x)}ln^{2}(x) + 8{x}^{(2x)}ln(x) + \frac{2{x}^{(2x)}}{x} + 4{x}^{(2x)}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( 4{x}^{(2x)}ln^{2}(x) + 8{x}^{(2x)}ln(x) + \frac{2{x}^{(2x)}}{x} + 4{x}^{(2x)}\right)}{dx}\\=&4({x}^{(2x)}((2)ln(x) + \frac{(2x)(1)}{(x)}))ln^{2}(x) + \frac{4{x}^{(2x)}*2ln(x)}{(x)} + 8({x}^{(2x)}((2)ln(x) + \frac{(2x)(1)}{(x)}))ln(x) + \frac{8{x}^{(2x)}}{(x)} + \frac{2*-{x}^{(2x)}}{x^{2}} + \frac{2({x}^{(2x)}((2)ln(x) + \frac{(2x)(1)}{(x)}))}{x} + 4({x}^{(2x)}((2)ln(x) + \frac{(2x)(1)}{(x)}))\\=&8{x}^{(2x)}ln^{3}(x) + 24{x}^{(2x)}ln^{2}(x) + \frac{12{x}^{(2x)}ln(x)}{x} + 24{x}^{(2x)}ln(x) + \frac{12{x}^{(2x)}}{x} - \frac{2{x}^{(2x)}}{x^{2}} + 8{x}^{(2x)}\\ \end{split}\end{equation} \]\[ \begin{equation}\begin{split}[3/4]Find\ the\ third\ derivative\ of\ function\ {(2x)}^{x}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = (2x)^{x}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( (2x)^{x}\right)}{dx}\\=&((2x)^{x}((1)ln(2x) + \frac{(x)(2)}{(2x)}))\\=&(2x)^{x}ln(2x) + (2x)^{x}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( (2x)^{x}ln(2x) + (2x)^{x}\right)}{dx}\\=&((2x)^{x}((1)ln(2x) + \frac{(x)(2)}{(2x)}))ln(2x) + \frac{(2x)^{x}*2}{(2x)} + ((2x)^{x}((1)ln(2x) + \frac{(x)(2)}{(2x)}))\\=&(2x)^{x}ln^{2}(2x) + 2(2x)^{x}ln(2x) + \frac{(2x)^{x}}{x} + (2x)^{x}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( (2x)^{x}ln^{2}(2x) + 2(2x)^{x}ln(2x) + \frac{(2x)^{x}}{x} + (2x)^{x}\right)}{dx}\\=&((2x)^{x}((1)ln(2x) + \frac{(x)(2)}{(2x)}))ln^{2}(2x) + \frac{(2x)^{x}*2ln(2x)*2}{(2x)} + 2((2x)^{x}((1)ln(2x) + \frac{(x)(2)}{(2x)}))ln(2x) + \frac{2(2x)^{x}*2}{(2x)} + \frac{-(2x)^{x}}{x^{2}} + \frac{((2x)^{x}((1)ln(2x) + \frac{(x)(2)}{(2x)}))}{x} + ((2x)^{x}((1)ln(2x) + \frac{(x)(2)}{(2x)}))\\=&(2x)^{x}ln^{3}(2x) + 3(2x)^{x}ln^{2}(2x) + \frac{3(2x)^{x}ln(2x)}{x} + 3(2x)^{x}ln(2x) + \frac{3(2x)^{x}}{x} - \frac{(2x)^{x}}{x^{2}} + (2x)^{x}\\ \end{split}\end{equation} \]\[ \begin{equation}\begin{split}[4/4]Find\ the\ third\ derivative\ of\ function\ {(2x)}^{(2x)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = (2x)^{(2x)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( (2x)^{(2x)}\right)}{dx}\\=&((2x)^{(2x)}((2)ln(2x) + \frac{(2x)(2)}{(2x)}))\\=&2(2x)^{(2x)}ln(2x) + 2(2x)^{(2x)}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 2(2x)^{(2x)}ln(2x) + 2(2x)^{(2x)}\right)}{dx}\\=&2((2x)^{(2x)}((2)ln(2x) + \frac{(2x)(2)}{(2x)}))ln(2x) + \frac{2(2x)^{(2x)}*2}{(2x)} + 2((2x)^{(2x)}((2)ln(2x) + \frac{(2x)(2)}{(2x)}))\\=&4(2x)^{(2x)}ln^{2}(2x) + 8(2x)^{(2x)}ln(2x) + \frac{2(2x)^{(2x)}}{x} + 4(2x)^{(2x)}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( 4(2x)^{(2x)}ln^{2}(2x) + 8(2x)^{(2x)}ln(2x) + \frac{2(2x)^{(2x)}}{x} + 4(2x)^{(2x)}\right)}{dx}\\=&4((2x)^{(2x)}((2)ln(2x) + \frac{(2x)(2)}{(2x)}))ln^{2}(2x) + \frac{4(2x)^{(2x)}*2ln(2x)*2}{(2x)} + 8((2x)^{(2x)}((2)ln(2x) + \frac{(2x)(2)}{(2x)}))ln(2x) + \frac{8(2x)^{(2x)}*2}{(2x)} + \frac{2*-(2x)^{(2x)}}{x^{2}} + \frac{2((2x)^{(2x)}((2)ln(2x) + \frac{(2x)(2)}{(2x)}))}{x} + 4((2x)^{(2x)}((2)ln(2x) + \frac{(2x)(2)}{(2x)}))\\=&8(2x)^{(2x)}ln^{3}(2x) + 24(2x)^{(2x)}ln^{2}(2x) + \frac{12(2x)^{(2x)}ln(2x)}{x} + 24(2x)^{(2x)}ln(2x) + \frac{12(2x)^{(2x)}}{x} - \frac{2(2x)^{(2x)}}{x^{2}} + 8(2x)^{(2x)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!