There are 3 questions in this calculation: for each question, the 4 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/3]Find\ the\ 4th\ derivative\ of\ function\ {(sin(1))}^{x}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = {sin(1)}^{x}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {sin(1)}^{x}\right)}{dx}\\=&({sin(1)}^{x}((1)ln(sin(1)) + \frac{(x)(cos(1)*0)}{(sin(1))}))\\=&{sin(1)}^{x}ln(sin(1))\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( {sin(1)}^{x}ln(sin(1))\right)}{dx}\\=&({sin(1)}^{x}((1)ln(sin(1)) + \frac{(x)(cos(1)*0)}{(sin(1))}))ln(sin(1)) + \frac{{sin(1)}^{x}cos(1)*0}{(sin(1))}\\=&{sin(1)}^{x}ln^{2}(sin(1))\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( {sin(1)}^{x}ln^{2}(sin(1))\right)}{dx}\\=&({sin(1)}^{x}((1)ln(sin(1)) + \frac{(x)(cos(1)*0)}{(sin(1))}))ln^{2}(sin(1)) + \frac{{sin(1)}^{x}*2ln(sin(1))cos(1)*0}{(sin(1))}\\=&{sin(1)}^{x}ln^{3}(sin(1))\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( {sin(1)}^{x}ln^{3}(sin(1))\right)}{dx}\\=&({sin(1)}^{x}((1)ln(sin(1)) + \frac{(x)(cos(1)*0)}{(sin(1))}))ln^{3}(sin(1)) + \frac{{sin(1)}^{x}*3ln^{2}(sin(1))cos(1)*0}{(sin(1))}\\=&{sin(1)}^{x}ln^{4}(sin(1))\\ \end{split}\end{equation} \]\[ \begin{equation}\begin{split}[2/3]Find\ the\ 4th\ derivative\ of\ function\ {(cos(1))}^{x}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = {cos(1)}^{x}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {cos(1)}^{x}\right)}{dx}\\=&({cos(1)}^{x}((1)ln(cos(1)) + \frac{(x)(-sin(1)*0)}{(cos(1))}))\\=&{cos(1)}^{x}ln(cos(1))\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( {cos(1)}^{x}ln(cos(1))\right)}{dx}\\=&({cos(1)}^{x}((1)ln(cos(1)) + \frac{(x)(-sin(1)*0)}{(cos(1))}))ln(cos(1)) + \frac{{cos(1)}^{x}*-sin(1)*0}{(cos(1))}\\=&{cos(1)}^{x}ln^{2}(cos(1))\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( {cos(1)}^{x}ln^{2}(cos(1))\right)}{dx}\\=&({cos(1)}^{x}((1)ln(cos(1)) + \frac{(x)(-sin(1)*0)}{(cos(1))}))ln^{2}(cos(1)) + \frac{{cos(1)}^{x}*2ln(cos(1))*-sin(1)*0}{(cos(1))}\\=&{cos(1)}^{x}ln^{3}(cos(1))\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( {cos(1)}^{x}ln^{3}(cos(1))\right)}{dx}\\=&({cos(1)}^{x}((1)ln(cos(1)) + \frac{(x)(-sin(1)*0)}{(cos(1))}))ln^{3}(cos(1)) + \frac{{cos(1)}^{x}*3ln^{2}(cos(1))*-sin(1)*0}{(cos(1))}\\=&{cos(1)}^{x}ln^{4}(cos(1))\\ \end{split}\end{equation} \]\[ \begin{equation}\begin{split}[3/3]Find\ the\ 4th\ derivative\ of\ function\ {(tan(1))}^{x}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = {tan(1)}^{x}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {tan(1)}^{x}\right)}{dx}\\=&({tan(1)}^{x}((1)ln(tan(1)) + \frac{(x)(sec^{2}(1)(0))}{(tan(1))}))\\=&{tan(1)}^{x}ln(tan(1))\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( {tan(1)}^{x}ln(tan(1))\right)}{dx}\\=&({tan(1)}^{x}((1)ln(tan(1)) + \frac{(x)(sec^{2}(1)(0))}{(tan(1))}))ln(tan(1)) + \frac{{tan(1)}^{x}sec^{2}(1)(0)}{(tan(1))}\\=&{tan(1)}^{x}ln^{2}(tan(1))\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( {tan(1)}^{x}ln^{2}(tan(1))\right)}{dx}\\=&({tan(1)}^{x}((1)ln(tan(1)) + \frac{(x)(sec^{2}(1)(0))}{(tan(1))}))ln^{2}(tan(1)) + \frac{{tan(1)}^{x}*2ln(tan(1))sec^{2}(1)(0)}{(tan(1))}\\=&{tan(1)}^{x}ln^{3}(tan(1))\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( {tan(1)}^{x}ln^{3}(tan(1))\right)}{dx}\\=&({tan(1)}^{x}((1)ln(tan(1)) + \frac{(x)(sec^{2}(1)(0))}{(tan(1))}))ln^{3}(tan(1)) + \frac{{tan(1)}^{x}*3ln^{2}(tan(1))sec^{2}(1)(0)}{(tan(1))}\\=&{tan(1)}^{x}ln^{4}(tan(1))\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!