数学
         
语言:中文    Language:English
                                在线解方程   
展开
                                数学运算      
展开
                                线性代数      
展开
                                求导函数
                                函数图像
                                热门问题
求导函数:
    输入一个原函数(即需要求导的函数),然后设置需要求导的变量和求导的阶数,点击“下一步”按钮,即可获得该函数相应阶数的导函数。
    注意,输入的函数支持数学函数和其它常量。
    当前位置:求导函数 > 导函数计算历史 > 答案
    本次共计算 3 个题目:每一题对 x 求 4 阶导数。
    注意,变量是区分大小写的。
\[ \begin{equation}\begin{split}【1/3】求函数{(sin(1))}^{x} 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = {sin(1)}^{x}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( {sin(1)}^{x}\right)}{dx}\\=&({sin(1)}^{x}((1)ln(sin(1)) + \frac{(x)(cos(1)*0)}{(sin(1))}))\\=&{sin(1)}^{x}ln(sin(1))\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( {sin(1)}^{x}ln(sin(1))\right)}{dx}\\=&({sin(1)}^{x}((1)ln(sin(1)) + \frac{(x)(cos(1)*0)}{(sin(1))}))ln(sin(1)) + \frac{{sin(1)}^{x}cos(1)*0}{(sin(1))}\\=&{sin(1)}^{x}ln^{2}(sin(1))\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( {sin(1)}^{x}ln^{2}(sin(1))\right)}{dx}\\=&({sin(1)}^{x}((1)ln(sin(1)) + \frac{(x)(cos(1)*0)}{(sin(1))}))ln^{2}(sin(1)) + \frac{{sin(1)}^{x}*2ln(sin(1))cos(1)*0}{(sin(1))}\\=&{sin(1)}^{x}ln^{3}(sin(1))\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( {sin(1)}^{x}ln^{3}(sin(1))\right)}{dx}\\=&({sin(1)}^{x}((1)ln(sin(1)) + \frac{(x)(cos(1)*0)}{(sin(1))}))ln^{3}(sin(1)) + \frac{{sin(1)}^{x}*3ln^{2}(sin(1))cos(1)*0}{(sin(1))}\\=&{sin(1)}^{x}ln^{4}(sin(1))\\ \end{split}\end{equation} \]

\[ \begin{equation}\begin{split}【2/3】求函数{(cos(1))}^{x} 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = {cos(1)}^{x}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( {cos(1)}^{x}\right)}{dx}\\=&({cos(1)}^{x}((1)ln(cos(1)) + \frac{(x)(-sin(1)*0)}{(cos(1))}))\\=&{cos(1)}^{x}ln(cos(1))\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( {cos(1)}^{x}ln(cos(1))\right)}{dx}\\=&({cos(1)}^{x}((1)ln(cos(1)) + \frac{(x)(-sin(1)*0)}{(cos(1))}))ln(cos(1)) + \frac{{cos(1)}^{x}*-sin(1)*0}{(cos(1))}\\=&{cos(1)}^{x}ln^{2}(cos(1))\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( {cos(1)}^{x}ln^{2}(cos(1))\right)}{dx}\\=&({cos(1)}^{x}((1)ln(cos(1)) + \frac{(x)(-sin(1)*0)}{(cos(1))}))ln^{2}(cos(1)) + \frac{{cos(1)}^{x}*2ln(cos(1))*-sin(1)*0}{(cos(1))}\\=&{cos(1)}^{x}ln^{3}(cos(1))\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( {cos(1)}^{x}ln^{3}(cos(1))\right)}{dx}\\=&({cos(1)}^{x}((1)ln(cos(1)) + \frac{(x)(-sin(1)*0)}{(cos(1))}))ln^{3}(cos(1)) + \frac{{cos(1)}^{x}*3ln^{2}(cos(1))*-sin(1)*0}{(cos(1))}\\=&{cos(1)}^{x}ln^{4}(cos(1))\\ \end{split}\end{equation} \]

\[ \begin{equation}\begin{split}【3/3】求函数{(tan(1))}^{x} 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = {tan(1)}^{x}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( {tan(1)}^{x}\right)}{dx}\\=&({tan(1)}^{x}((1)ln(tan(1)) + \frac{(x)(sec^{2}(1)(0))}{(tan(1))}))\\=&{tan(1)}^{x}ln(tan(1))\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( {tan(1)}^{x}ln(tan(1))\right)}{dx}\\=&({tan(1)}^{x}((1)ln(tan(1)) + \frac{(x)(sec^{2}(1)(0))}{(tan(1))}))ln(tan(1)) + \frac{{tan(1)}^{x}sec^{2}(1)(0)}{(tan(1))}\\=&{tan(1)}^{x}ln^{2}(tan(1))\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( {tan(1)}^{x}ln^{2}(tan(1))\right)}{dx}\\=&({tan(1)}^{x}((1)ln(tan(1)) + \frac{(x)(sec^{2}(1)(0))}{(tan(1))}))ln^{2}(tan(1)) + \frac{{tan(1)}^{x}*2ln(tan(1))sec^{2}(1)(0)}{(tan(1))}\\=&{tan(1)}^{x}ln^{3}(tan(1))\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( {tan(1)}^{x}ln^{3}(tan(1))\right)}{dx}\\=&({tan(1)}^{x}((1)ln(tan(1)) + \frac{(x)(sec^{2}(1)(0))}{(tan(1))}))ln^{3}(tan(1)) + \frac{{tan(1)}^{x}*3ln^{2}(tan(1))sec^{2}(1)(0)}{(tan(1))}\\=&{tan(1)}^{x}ln^{4}(tan(1))\\ \end{split}\end{equation} \]



你的问题在这里没有得到解决?请到 热门难题 里面看看吧!





    最  新  发  

  新增加身体健康评估计算器,位置:“数学运算 > 身体健康评估”。

  新增加学习笔记(安卓版)百度网盘快速下载应用程序,欢迎使用。
  新增加学习笔记(安卓版)本站下载应用程序,欢迎使用。

  新增线性代数行列式的计算,欢迎使用。

  数学计算和一元方程已经支持正割函数余割函数,欢迎使用。

  新增加贷款计算器模块(具体位置:数学运算 > 贷款计算器),欢迎使用。