There are 2 questions in this calculation: for each question, the 4 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/2]Find\ the\ 4th\ derivative\ of\ function\ sinh(x)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( sinh(x)\right)}{dx}\\=&cosh(x)\\=&cosh(x)\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( cosh(x)\right)}{dx}\\=&sinh(x)\\=&sinh(x)\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( sinh(x)\right)}{dx}\\=&cosh(x)\\=&cosh(x)\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( cosh(x)\right)}{dx}\\=&sinh(x)\\=&sinh(x)\\ \end{split}\end{equation} \]\[ \begin{equation}\begin{split}[2/2]Find\ the\ 4th\ derivative\ of\ function\ sin(hx)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( sin(hx)\right)}{dx}\\=&cos(hx)h\\=&hcos(hx)\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( hcos(hx)\right)}{dx}\\=&h*-sin(hx)h\\=&-h^{2}sin(hx)\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( -h^{2}sin(hx)\right)}{dx}\\=&-h^{2}cos(hx)h\\=&-h^{3}cos(hx)\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( -h^{3}cos(hx)\right)}{dx}\\=&-h^{3}*-sin(hx)h\\=&h^{4}sin(hx)\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!