There are 2 questions in this calculation: for each question, the 4 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/2]Find\ the\ 4th\ derivative\ of\ function\ kx\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( kx\right)}{dx}\\=&k\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( k\right)}{dx}\\=&0\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( 0\right)}{dx}\\=&0\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( 0\right)}{dx}\\=&0\\ \end{split}\end{equation} \]\[ \begin{equation}\begin{split}[2/2]Find\ the\ 4th\ derivative\ of\ function\ log_{a}^{x}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( log_{a}^{x}\right)}{dx}\\=&(\frac{(\frac{(1)}{(x)} - \frac{(0)log_{a}^{x}}{(a)})}{(ln(a))})\\=&\frac{1}{xln(a)}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{1}{xln(a)}\right)}{dx}\\=&\frac{-1}{x^{2}ln(a)} + \frac{-0}{xln^{2}(a)(a)}\\=&\frac{-1}{x^{2}ln(a)}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( \frac{-1}{x^{2}ln(a)}\right)}{dx}\\=&\frac{--2}{x^{3}ln(a)} - \frac{-0}{x^{2}ln^{2}(a)(a)}\\=&\frac{2}{x^{3}ln(a)}\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( \frac{2}{x^{3}ln(a)}\right)}{dx}\\=&\frac{2*-3}{x^{4}ln(a)} + \frac{2*-0}{x^{3}ln^{2}(a)(a)}\\=&\frac{-6}{x^{4}ln(a)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!