There are 2 questions in this calculation: for each question, the 4 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/2]Find\ the\ 4th\ derivative\ of\ function\ arcsec(x)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( arcsec(x)\right)}{dx}\\=&arcsec(x)tan(x)\\=&arctan(x)sec(x)\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( arctan(x)sec(x)\right)}{dx}\\=&arcsec^{2}(x)(1)sec(x) + arctan(x)sec(x)tan(x)\\=&arcsec^{3}(x) + arctan^{2}(x)sec(x)\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( arcsec^{3}(x) + arctan^{2}(x)sec(x)\right)}{dx}\\=&arc*3sec^{3}(x)tan(x) + arc*2tan(x)sec^{2}(x)(1)sec(x) + arctan^{2}(x)sec(x)tan(x)\\=&5arctan(x)sec^{3}(x) + arctan^{3}(x)sec(x)\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( 5arctan(x)sec^{3}(x) + arctan^{3}(x)sec(x)\right)}{dx}\\=&5arcsec^{2}(x)(1)sec^{3}(x) + 5arctan(x)*3sec^{3}(x)tan(x) + arc*3tan^{2}(x)sec^{2}(x)(1)sec(x) + arctan^{3}(x)sec(x)tan(x)\\=&5arcsec^{5}(x) + 18arctan^{2}(x)sec^{3}(x) + arctan^{4}(x)sec(x)\\ \end{split}\end{equation} \]\[ \begin{equation}\begin{split}[2/2]Find\ the\ 4th\ derivative\ of\ function\ arccsc(x)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( arccsc(x)\right)}{dx}\\=&arc*-csc(x)cot(x)\\=&-arccot(x)csc(x)\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( -arccot(x)csc(x)\right)}{dx}\\=&-arc*-csc^{2}(x)csc(x) - arccot(x)*-csc(x)cot(x)\\=&arccsc^{3}(x) + arccot^{2}(x)csc(x)\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( arccsc^{3}(x) + arccot^{2}(x)csc(x)\right)}{dx}\\=&arc*-3csc^{3}(x)cot(x) + arc*-2cot(x)csc^{2}(x)csc(x) + arccot^{2}(x)*-csc(x)cot(x)\\=& - 5arccot(x)csc^{3}(x) - arccot^{3}(x)csc(x)\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( - 5arccot(x)csc^{3}(x) - arccot^{3}(x)csc(x)\right)}{dx}\\=& - 5arc*-csc^{2}(x)csc^{3}(x) - 5arccot(x)*-3csc^{3}(x)cot(x) - arc*-3cot^{2}(x)csc^{2}(x)csc(x) - arccot^{3}(x)*-csc(x)cot(x)\\=&5arccsc^{5}(x) + 18arccot^{2}(x)csc^{3}(x) + arccot^{4}(x)csc(x)\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!