本次共计算 2 个题目:每一题对 x 求 4 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/2】求函数arcsec(x) 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( arcsec(x)\right)}{dx}\\=&arcsec(x)tan(x)\\=&arctan(x)sec(x)\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( arctan(x)sec(x)\right)}{dx}\\=&arcsec^{2}(x)(1)sec(x) + arctan(x)sec(x)tan(x)\\=&arcsec^{3}(x) + arctan^{2}(x)sec(x)\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( arcsec^{3}(x) + arctan^{2}(x)sec(x)\right)}{dx}\\=&arc*3sec^{3}(x)tan(x) + arc*2tan(x)sec^{2}(x)(1)sec(x) + arctan^{2}(x)sec(x)tan(x)\\=&5arctan(x)sec^{3}(x) + arctan^{3}(x)sec(x)\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( 5arctan(x)sec^{3}(x) + arctan^{3}(x)sec(x)\right)}{dx}\\=&5arcsec^{2}(x)(1)sec^{3}(x) + 5arctan(x)*3sec^{3}(x)tan(x) + arc*3tan^{2}(x)sec^{2}(x)(1)sec(x) + arctan^{3}(x)sec(x)tan(x)\\=&5arcsec^{5}(x) + 18arctan^{2}(x)sec^{3}(x) + arctan^{4}(x)sec(x)\\ \end{split}\end{equation} \]\[ \begin{equation}\begin{split}【2/2】求函数arccsc(x) 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( arccsc(x)\right)}{dx}\\=&arc*-csc(x)cot(x)\\=&-arccot(x)csc(x)\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( -arccot(x)csc(x)\right)}{dx}\\=&-arc*-csc^{2}(x)csc(x) - arccot(x)*-csc(x)cot(x)\\=&arccsc^{3}(x) + arccot^{2}(x)csc(x)\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( arccsc^{3}(x) + arccot^{2}(x)csc(x)\right)}{dx}\\=&arc*-3csc^{3}(x)cot(x) + arc*-2cot(x)csc^{2}(x)csc(x) + arccot^{2}(x)*-csc(x)cot(x)\\=& - 5arccot(x)csc^{3}(x) - arccot^{3}(x)csc(x)\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( - 5arccot(x)csc^{3}(x) - arccot^{3}(x)csc(x)\right)}{dx}\\=& - 5arc*-csc^{2}(x)csc^{3}(x) - 5arccot(x)*-3csc^{3}(x)cot(x) - arc*-3cot^{2}(x)csc^{2}(x)csc(x) - arccot^{3}(x)*-csc(x)cot(x)\\=&5arccsc^{5}(x) + 18arccot^{2}(x)csc^{3}(x) + arccot^{4}(x)csc(x)\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!