There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ \frac{(8ac - 3bb)(256aaaf - 64aabd + 16abbc - 3bbbb)}{(12288{a}^{6})} - \frac{{(\frac{(8ac - 3bb)}{(8aa)})}^{3}}{216} - {(\frac{(8aad - 4abc + bbb)}{(32aaa)})}^{2}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{\frac{1}{6}cf}{a^{2}} + \frac{\frac{1}{48}cbd}{a^{3}} - \frac{\frac{1}{16}b^{2}f}{a^{3}} - \frac{\frac{1}{216}c^{3}}{a^{3}} - \frac{\frac{1}{16}d^{2}}{a^{2}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{\frac{1}{6}cf}{a^{2}} + \frac{\frac{1}{48}cbd}{a^{3}} - \frac{\frac{1}{16}b^{2}f}{a^{3}} - \frac{\frac{1}{216}c^{3}}{a^{3}} - \frac{\frac{1}{16}d^{2}}{a^{2}}\right)}{dx}\\=&0 + 0 + 0 + 0 + 0\\=&0\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 0\right)}{dx}\\=&0\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( 0\right)}{dx}\\=&0\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( 0\right)}{dx}\\=&0\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!