There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ 3x{\frac{1}{(3{x}^{2} + 2x + 5)}}^{\frac{1}{2}} + {\frac{1}{(3{x}^{2} + 2x + 5)}}^{\frac{1}{2}}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{3x}{(3x^{2} + 2x + 5)^{\frac{1}{2}}} + \frac{1}{(3x^{2} + 2x + 5)^{\frac{1}{2}}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{3x}{(3x^{2} + 2x + 5)^{\frac{1}{2}}} + \frac{1}{(3x^{2} + 2x + 5)^{\frac{1}{2}}}\right)}{dx}\\=&3(\frac{\frac{-1}{2}(3*2x + 2 + 0)}{(3x^{2} + 2x + 5)^{\frac{3}{2}}})x + \frac{3}{(3x^{2} + 2x + 5)^{\frac{1}{2}}} + (\frac{\frac{-1}{2}(3*2x + 2 + 0)}{(3x^{2} + 2x + 5)^{\frac{3}{2}}})\\=&\frac{-9x^{2}}{(3x^{2} + 2x + 5)^{\frac{3}{2}}} - \frac{6x}{(3x^{2} + 2x + 5)^{\frac{3}{2}}} + \frac{3}{(3x^{2} + 2x + 5)^{\frac{1}{2}}} - \frac{1}{(3x^{2} + 2x + 5)^{\frac{3}{2}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!