There are 2 questions in this calculation: for each question, the 4 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/2]Find\ the\ 4th\ derivative\ of\ function\ cosh(2x)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( cosh(2x)\right)}{dx}\\=&sinh(2x)*2\\=&2sinh(2x)\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 2sinh(2x)\right)}{dx}\\=&2cosh(2x)*2\\=&4cosh(2x)\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( 4cosh(2x)\right)}{dx}\\=&4sinh(2x)*2\\=&8sinh(2x)\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( 8sinh(2x)\right)}{dx}\\=&8cosh(2x)*2\\=&16cosh(2x)\\ \end{split}\end{equation} \]\[ \begin{equation}\begin{split}[2/2]Find\ the\ 4th\ derivative\ of\ function\ {sinh(x)}^{2} + {cosh(x)}^{2}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = sinh^{2}(x) + cosh^{2}(x)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( sinh^{2}(x) + cosh^{2}(x)\right)}{dx}\\=&2sinh(x)cosh(x) + 2cosh(x)sinh(x)\\=&4sinh(x)cosh(x)\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 4sinh(x)cosh(x)\right)}{dx}\\=&4cosh(x)cosh(x) + 4sinh(x)sinh(x)\\=&4cosh^{2}(x) + 4sinh^{2}(x)\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( 4cosh^{2}(x) + 4sinh^{2}(x)\right)}{dx}\\=&4*2cosh(x)sinh(x) + 4*2sinh(x)cosh(x)\\=&16sinh(x)cosh(x)\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( 16sinh(x)cosh(x)\right)}{dx}\\=&16cosh(x)cosh(x) + 16sinh(x)sinh(x)\\=&16cosh^{2}(x) + 16sinh^{2}(x)\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!