There are 2 questions in this calculation: for each question, the 4 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/2]Find\ the\ 4th\ derivative\ of\ function\ {sec(x)}^{2}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = sec^{2}(x)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( sec^{2}(x)\right)}{dx}\\=&2sec^{2}(x)tan(x)\\=&2tan(x)sec^{2}(x)\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 2tan(x)sec^{2}(x)\right)}{dx}\\=&2sec^{2}(x)(1)sec^{2}(x) + 2tan(x)*2sec^{2}(x)tan(x)\\=&2sec^{4}(x) + 4tan^{2}(x)sec^{2}(x)\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( 2sec^{4}(x) + 4tan^{2}(x)sec^{2}(x)\right)}{dx}\\=&2*4sec^{4}(x)tan(x) + 4*2tan(x)sec^{2}(x)(1)sec^{2}(x) + 4tan^{2}(x)*2sec^{2}(x)tan(x)\\=&16tan(x)sec^{4}(x) + 8tan^{3}(x)sec^{2}(x)\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( 16tan(x)sec^{4}(x) + 8tan^{3}(x)sec^{2}(x)\right)}{dx}\\=&16sec^{2}(x)(1)sec^{4}(x) + 16tan(x)*4sec^{4}(x)tan(x) + 8*3tan^{2}(x)sec^{2}(x)(1)sec^{2}(x) + 8tan^{3}(x)*2sec^{2}(x)tan(x)\\=&16sec^{6}(x) + 88tan^{2}(x)sec^{4}(x) + 16tan^{4}(x)sec^{2}(x)\\ \end{split}\end{equation} \]\[ \begin{equation}\begin{split}[2/2]Find\ the\ 4th\ derivative\ of\ function\ {tan(x)}^{2} + 1\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = tan^{2}(x) + 1\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( tan^{2}(x) + 1\right)}{dx}\\=&2tan(x)sec^{2}(x)(1) + 0\\=&2tan(x)sec^{2}(x)\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 2tan(x)sec^{2}(x)\right)}{dx}\\=&2sec^{2}(x)(1)sec^{2}(x) + 2tan(x)*2sec^{2}(x)tan(x)\\=&2sec^{4}(x) + 4tan^{2}(x)sec^{2}(x)\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( 2sec^{4}(x) + 4tan^{2}(x)sec^{2}(x)\right)}{dx}\\=&2*4sec^{4}(x)tan(x) + 4*2tan(x)sec^{2}(x)(1)sec^{2}(x) + 4tan^{2}(x)*2sec^{2}(x)tan(x)\\=&16tan(x)sec^{4}(x) + 8tan^{3}(x)sec^{2}(x)\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( 16tan(x)sec^{4}(x) + 8tan^{3}(x)sec^{2}(x)\right)}{dx}\\=&16sec^{2}(x)(1)sec^{4}(x) + 16tan(x)*4sec^{4}(x)tan(x) + 8*3tan^{2}(x)sec^{2}(x)(1)sec^{2}(x) + 8tan^{3}(x)*2sec^{2}(x)tan(x)\\=&16sec^{6}(x) + 88tan^{2}(x)sec^{4}(x) + 16tan^{4}(x)sec^{2}(x)\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!