本次共计算 2 个题目:每一题对 x 求 4 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/2】求函数{sec(x)}^{2} 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = sec^{2}(x)\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( sec^{2}(x)\right)}{dx}\\=&2sec^{2}(x)tan(x)\\=&2tan(x)sec^{2}(x)\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( 2tan(x)sec^{2}(x)\right)}{dx}\\=&2sec^{2}(x)(1)sec^{2}(x) + 2tan(x)*2sec^{2}(x)tan(x)\\=&2sec^{4}(x) + 4tan^{2}(x)sec^{2}(x)\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( 2sec^{4}(x) + 4tan^{2}(x)sec^{2}(x)\right)}{dx}\\=&2*4sec^{4}(x)tan(x) + 4*2tan(x)sec^{2}(x)(1)sec^{2}(x) + 4tan^{2}(x)*2sec^{2}(x)tan(x)\\=&16tan(x)sec^{4}(x) + 8tan^{3}(x)sec^{2}(x)\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( 16tan(x)sec^{4}(x) + 8tan^{3}(x)sec^{2}(x)\right)}{dx}\\=&16sec^{2}(x)(1)sec^{4}(x) + 16tan(x)*4sec^{4}(x)tan(x) + 8*3tan^{2}(x)sec^{2}(x)(1)sec^{2}(x) + 8tan^{3}(x)*2sec^{2}(x)tan(x)\\=&16sec^{6}(x) + 88tan^{2}(x)sec^{4}(x) + 16tan^{4}(x)sec^{2}(x)\\ \end{split}\end{equation} \]\[ \begin{equation}\begin{split}【2/2】求函数{tan(x)}^{2} + 1 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = tan^{2}(x) + 1\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( tan^{2}(x) + 1\right)}{dx}\\=&2tan(x)sec^{2}(x)(1) + 0\\=&2tan(x)sec^{2}(x)\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( 2tan(x)sec^{2}(x)\right)}{dx}\\=&2sec^{2}(x)(1)sec^{2}(x) + 2tan(x)*2sec^{2}(x)tan(x)\\=&2sec^{4}(x) + 4tan^{2}(x)sec^{2}(x)\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( 2sec^{4}(x) + 4tan^{2}(x)sec^{2}(x)\right)}{dx}\\=&2*4sec^{4}(x)tan(x) + 4*2tan(x)sec^{2}(x)(1)sec^{2}(x) + 4tan^{2}(x)*2sec^{2}(x)tan(x)\\=&16tan(x)sec^{4}(x) + 8tan^{3}(x)sec^{2}(x)\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( 16tan(x)sec^{4}(x) + 8tan^{3}(x)sec^{2}(x)\right)}{dx}\\=&16sec^{2}(x)(1)sec^{4}(x) + 16tan(x)*4sec^{4}(x)tan(x) + 8*3tan^{2}(x)sec^{2}(x)(1)sec^{2}(x) + 8tan^{3}(x)*2sec^{2}(x)tan(x)\\=&16sec^{6}(x) + 88tan^{2}(x)sec^{4}(x) + 16tan^{4}(x)sec^{2}(x)\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!