There are 2 questions in this calculation: for each question, the 4 derivative of c is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/2]Find\ the\ 4th\ derivative\ of\ function\ \frac{(-b + sqrt({b}^{2} - 4ac))}{(2a)}\ with\ respect\ to\ c:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{\frac{-1}{2}b}{a} + \frac{\frac{1}{2}sqrt(b^{2} - 4ac)}{a}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{\frac{-1}{2}b}{a} + \frac{\frac{1}{2}sqrt(b^{2} - 4ac)}{a}\right)}{dc}\\=&0 + \frac{\frac{1}{2}(0 - 4a)*\frac{1}{2}}{a(b^{2} - 4ac)^{\frac{1}{2}}}\\=& - \frac{1}{(b^{2} - 4ac)^{\frac{1}{2}}}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( - \frac{1}{(b^{2} - 4ac)^{\frac{1}{2}}}\right)}{dc}\\=& - (\frac{\frac{-1}{2}(0 - 4a)}{(b^{2} - 4ac)^{\frac{3}{2}}})\\=& - \frac{2a}{(b^{2} - 4ac)^{\frac{3}{2}}}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( - \frac{2a}{(b^{2} - 4ac)^{\frac{3}{2}}}\right)}{dc}\\=& - 2(\frac{\frac{-3}{2}(0 - 4a)}{(b^{2} - 4ac)^{\frac{5}{2}}})a + 0\\=& - \frac{12a^{2}}{(b^{2} - 4ac)^{\frac{5}{2}}}\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( - \frac{12a^{2}}{(b^{2} - 4ac)^{\frac{5}{2}}}\right)}{dc}\\=& - 12(\frac{\frac{-5}{2}(0 - 4a)}{(b^{2} - 4ac)^{\frac{7}{2}}})a^{2} + 0\\=& - \frac{120a^{3}}{(b^{2} - 4ac)^{\frac{7}{2}}}\\ \end{split}\end{equation} \]\[ \begin{equation}\begin{split}[2/2]Find\ the\ 4th\ derivative\ of\ function\ \frac{(-b - sqrt({b}^{2} - 4ac))}{(2a)}\ with\ respect\ to\ c:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{\frac{-1}{2}b}{a} - \frac{\frac{1}{2}sqrt(b^{2} - 4ac)}{a}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{\frac{-1}{2}b}{a} - \frac{\frac{1}{2}sqrt(b^{2} - 4ac)}{a}\right)}{dc}\\=&0 - \frac{\frac{1}{2}(0 - 4a)*\frac{1}{2}}{a(b^{2} - 4ac)^{\frac{1}{2}}}\\=&\frac{1}{(b^{2} - 4ac)^{\frac{1}{2}}}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{1}{(b^{2} - 4ac)^{\frac{1}{2}}}\right)}{dc}\\=&(\frac{\frac{-1}{2}(0 - 4a)}{(b^{2} - 4ac)^{\frac{3}{2}}})\\=&\frac{2a}{(b^{2} - 4ac)^{\frac{3}{2}}}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( \frac{2a}{(b^{2} - 4ac)^{\frac{3}{2}}}\right)}{dc}\\=&2(\frac{\frac{-3}{2}(0 - 4a)}{(b^{2} - 4ac)^{\frac{5}{2}}})a + 0\\=&\frac{12a^{2}}{(b^{2} - 4ac)^{\frac{5}{2}}}\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( \frac{12a^{2}}{(b^{2} - 4ac)^{\frac{5}{2}}}\right)}{dc}\\=&12(\frac{\frac{-5}{2}(0 - 4a)}{(b^{2} - 4ac)^{\frac{7}{2}}})a^{2} + 0\\=&\frac{120a^{3}}{(b^{2} - 4ac)^{\frac{7}{2}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!