There are 4 questions in this calculation: for each question, the 4 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/4]Find\ the\ 4th\ derivative\ of\ function\ ln(x)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( ln(x)\right)}{dx}\\=&\frac{1}{(x)}\\=&\frac{1}{x}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{1}{x}\right)}{dx}\\=&\frac{-1}{x^{2}}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( \frac{-1}{x^{2}}\right)}{dx}\\=&\frac{--2}{x^{3}}\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( \frac{2}{x^{3}}\right)}{dx}\\=&\frac{2*-3}{x^{4}}\\=&\frac{-6}{x^{4}}\\ \end{split}\end{equation} \]\[ \begin{equation}\begin{split}[2/4]Find\ the\ 4th\ derivative\ of\ function\ \frac{-1}{x}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{-1}{x}\right)}{dx}\\=&\frac{--1}{x^{2}}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{1}{x^{2}}\right)}{dx}\\=&\frac{-2}{x^{3}}\\=&\frac{-2}{x^{3}}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( \frac{-2}{x^{3}}\right)}{dx}\\=&\frac{-2*-3}{x^{4}}\\=&\frac{6}{x^{4}}\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( \frac{6}{x^{4}}\right)}{dx}\\=&\frac{6*-4}{x^{5}}\\=&\frac{-24}{x^{5}}\\ \end{split}\end{equation} \]\[ \begin{equation}\begin{split}[3/4]Find\ the\ 4th\ derivative\ of\ function\ \frac{-1}{(2xx)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{\frac{-1}{2}}{x^{2}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{\frac{-1}{2}}{x^{2}}\right)}{dx}\\=&\frac{\frac{-1}{2}*-2}{x^{3}}\\=&\frac{1}{x^{3}}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{1}{x^{3}}\right)}{dx}\\=&\frac{-3}{x^{4}}\\=&\frac{-3}{x^{4}}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( \frac{-3}{x^{4}}\right)}{dx}\\=&\frac{-3*-4}{x^{5}}\\=&\frac{12}{x^{5}}\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( \frac{12}{x^{5}}\right)}{dx}\\=&\frac{12*-5}{x^{6}}\\=&\frac{-60}{x^{6}}\\ \end{split}\end{equation} \]\[ \begin{equation}\begin{split}[4/4]Find\ the\ 4th\ derivative\ of\ function\ \frac{-1}{(3xxx)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{\frac{-1}{3}}{x^{3}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{\frac{-1}{3}}{x^{3}}\right)}{dx}\\=&\frac{\frac{-1}{3}*-3}{x^{4}}\\=&\frac{1}{x^{4}}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{1}{x^{4}}\right)}{dx}\\=&\frac{-4}{x^{5}}\\=&\frac{-4}{x^{5}}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( \frac{-4}{x^{5}}\right)}{dx}\\=&\frac{-4*-5}{x^{6}}\\=&\frac{20}{x^{6}}\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( \frac{20}{x^{6}}\right)}{dx}\\=&\frac{20*-6}{x^{7}}\\=&\frac{-120}{x^{7}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!