Mathematics
         
语言:中文    Language:English
                                Equations   
Unfold
                                Math OP  
Unfold
                                Linear algebra      
Unfold
                                Derivative function
                                Function image
                                Hot issues
Derivative function:
    Enter an original function (that is, the function to be derived), then set the variable to be derived and the order of the derivative, and click the "Next" button to obtain the derivative function of the corresponding order of the function.
    Note that the input function supports mathematical functions and other constants.
    Current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ {(\frac{({x}^{2} + a)}{2})}^{(\frac{143}{10} - 2a)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = (\frac{1}{2}x^{2} + \frac{1}{2}a)^{(-2a + \frac{143}{10})}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( (\frac{1}{2}x^{2} + \frac{1}{2}a)^{(-2a + \frac{143}{10})}\right)}{dx}\\=&((\frac{1}{2}x^{2} + \frac{1}{2}a)^{(-2a + \frac{143}{10})}((0 + 0)ln(\frac{1}{2}x^{2} + \frac{1}{2}a) + \frac{(-2a + \frac{143}{10})(\frac{1}{2}*2x + 0)}{(\frac{1}{2}x^{2} + \frac{1}{2}a)}))\\=&\frac{-2ax(\frac{1}{2}x^{2} + \frac{1}{2}a)^{(-2a + \frac{143}{10})}}{(\frac{1}{2}x^{2} + \frac{1}{2}a)} + \frac{143x(\frac{1}{2}x^{2} + \frac{1}{2}a)^{(-2a + \frac{143}{10})}}{10(\frac{1}{2}x^{2} + \frac{1}{2}a)}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{-2ax(\frac{1}{2}x^{2} + \frac{1}{2}a)^{(-2a + \frac{143}{10})}}{(\frac{1}{2}x^{2} + \frac{1}{2}a)} + \frac{143x(\frac{1}{2}x^{2} + \frac{1}{2}a)^{(-2a + \frac{143}{10})}}{10(\frac{1}{2}x^{2} + \frac{1}{2}a)}\right)}{dx}\\=&-2(\frac{-(\frac{1}{2}*2x + 0)}{(\frac{1}{2}x^{2} + \frac{1}{2}a)^{2}})ax(\frac{1}{2}x^{2} + \frac{1}{2}a)^{(-2a + \frac{143}{10})} - \frac{2a(\frac{1}{2}x^{2} + \frac{1}{2}a)^{(-2a + \frac{143}{10})}}{(\frac{1}{2}x^{2} + \frac{1}{2}a)} - \frac{2ax((\frac{1}{2}x^{2} + \frac{1}{2}a)^{(-2a + \frac{143}{10})}((0 + 0)ln(\frac{1}{2}x^{2} + \frac{1}{2}a) + \frac{(-2a + \frac{143}{10})(\frac{1}{2}*2x + 0)}{(\frac{1}{2}x^{2} + \frac{1}{2}a)}))}{(\frac{1}{2}x^{2} + \frac{1}{2}a)} + \frac{143(\frac{-(\frac{1}{2}*2x + 0)}{(\frac{1}{2}x^{2} + \frac{1}{2}a)^{2}})x(\frac{1}{2}x^{2} + \frac{1}{2}a)^{(-2a + \frac{143}{10})}}{10} + \frac{143(\frac{1}{2}x^{2} + \frac{1}{2}a)^{(-2a + \frac{143}{10})}}{10(\frac{1}{2}x^{2} + \frac{1}{2}a)} + \frac{143x((\frac{1}{2}x^{2} + \frac{1}{2}a)^{(-2a + \frac{143}{10})}((0 + 0)ln(\frac{1}{2}x^{2} + \frac{1}{2}a) + \frac{(-2a + \frac{143}{10})(\frac{1}{2}*2x + 0)}{(\frac{1}{2}x^{2} + \frac{1}{2}a)}))}{10(\frac{1}{2}x^{2} + \frac{1}{2}a)}\\=&\frac{-276ax^{2}(\frac{1}{2}x^{2} + \frac{1}{2}a)^{(-2a + \frac{143}{10})}}{5(\frac{1}{2}x^{2} + \frac{1}{2}a)^{2}} - \frac{2a(\frac{1}{2}x^{2} + \frac{1}{2}a)^{(-2a + \frac{143}{10})}}{(\frac{1}{2}x^{2} + \frac{1}{2}a)} + \frac{4a^{2}x^{2}(\frac{1}{2}x^{2} + \frac{1}{2}a)^{(-2a + \frac{143}{10})}}{(\frac{1}{2}x^{2} + \frac{1}{2}a)^{2}} + \frac{19019x^{2}(\frac{1}{2}x^{2} + \frac{1}{2}a)^{(-2a + \frac{143}{10})}}{100(\frac{1}{2}x^{2} + \frac{1}{2}a)^{2}} + \frac{143(\frac{1}{2}x^{2} + \frac{1}{2}a)^{(-2a + \frac{143}{10})}}{10(\frac{1}{2}x^{2} + \frac{1}{2}a)}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( \frac{-276ax^{2}(\frac{1}{2}x^{2} + \frac{1}{2}a)^{(-2a + \frac{143}{10})}}{5(\frac{1}{2}x^{2} + \frac{1}{2}a)^{2}} - \frac{2a(\frac{1}{2}x^{2} + \frac{1}{2}a)^{(-2a + \frac{143}{10})}}{(\frac{1}{2}x^{2} + \frac{1}{2}a)} + \frac{4a^{2}x^{2}(\frac{1}{2}x^{2} + \frac{1}{2}a)^{(-2a + \frac{143}{10})}}{(\frac{1}{2}x^{2} + \frac{1}{2}a)^{2}} + \frac{19019x^{2}(\frac{1}{2}x^{2} + \frac{1}{2}a)^{(-2a + \frac{143}{10})}}{100(\frac{1}{2}x^{2} + \frac{1}{2}a)^{2}} + \frac{143(\frac{1}{2}x^{2} + \frac{1}{2}a)^{(-2a + \frac{143}{10})}}{10(\frac{1}{2}x^{2} + \frac{1}{2}a)}\right)}{dx}\\=&\frac{-276(\frac{-2(\frac{1}{2}*2x + 0)}{(\frac{1}{2}x^{2} + \frac{1}{2}a)^{3}})ax^{2}(\frac{1}{2}x^{2} + \frac{1}{2}a)^{(-2a + \frac{143}{10})}}{5} - \frac{276a*2x(\frac{1}{2}x^{2} + \frac{1}{2}a)^{(-2a + \frac{143}{10})}}{5(\frac{1}{2}x^{2} + \frac{1}{2}a)^{2}} - \frac{276ax^{2}((\frac{1}{2}x^{2} + \frac{1}{2}a)^{(-2a + \frac{143}{10})}((0 + 0)ln(\frac{1}{2}x^{2} + \frac{1}{2}a) + \frac{(-2a + \frac{143}{10})(\frac{1}{2}*2x + 0)}{(\frac{1}{2}x^{2} + \frac{1}{2}a)}))}{5(\frac{1}{2}x^{2} + \frac{1}{2}a)^{2}} - 2(\frac{-(\frac{1}{2}*2x + 0)}{(\frac{1}{2}x^{2} + \frac{1}{2}a)^{2}})a(\frac{1}{2}x^{2} + \frac{1}{2}a)^{(-2a + \frac{143}{10})} - \frac{2a((\frac{1}{2}x^{2} + \frac{1}{2}a)^{(-2a + \frac{143}{10})}((0 + 0)ln(\frac{1}{2}x^{2} + \frac{1}{2}a) + \frac{(-2a + \frac{143}{10})(\frac{1}{2}*2x + 0)}{(\frac{1}{2}x^{2} + \frac{1}{2}a)}))}{(\frac{1}{2}x^{2} + \frac{1}{2}a)} + 4(\frac{-2(\frac{1}{2}*2x + 0)}{(\frac{1}{2}x^{2} + \frac{1}{2}a)^{3}})a^{2}x^{2}(\frac{1}{2}x^{2} + \frac{1}{2}a)^{(-2a + \frac{143}{10})} + \frac{4a^{2}*2x(\frac{1}{2}x^{2} + \frac{1}{2}a)^{(-2a + \frac{143}{10})}}{(\frac{1}{2}x^{2} + \frac{1}{2}a)^{2}} + \frac{4a^{2}x^{2}((\frac{1}{2}x^{2} + \frac{1}{2}a)^{(-2a + \frac{143}{10})}((0 + 0)ln(\frac{1}{2}x^{2} + \frac{1}{2}a) + \frac{(-2a + \frac{143}{10})(\frac{1}{2}*2x + 0)}{(\frac{1}{2}x^{2} + \frac{1}{2}a)}))}{(\frac{1}{2}x^{2} + \frac{1}{2}a)^{2}} + \frac{19019(\frac{-2(\frac{1}{2}*2x + 0)}{(\frac{1}{2}x^{2} + \frac{1}{2}a)^{3}})x^{2}(\frac{1}{2}x^{2} + \frac{1}{2}a)^{(-2a + \frac{143}{10})}}{100} + \frac{19019*2x(\frac{1}{2}x^{2} + \frac{1}{2}a)^{(-2a + \frac{143}{10})}}{100(\frac{1}{2}x^{2} + \frac{1}{2}a)^{2}} + \frac{19019x^{2}((\frac{1}{2}x^{2} + \frac{1}{2}a)^{(-2a + \frac{143}{10})}((0 + 0)ln(\frac{1}{2}x^{2} + \frac{1}{2}a) + \frac{(-2a + \frac{143}{10})(\frac{1}{2}*2x + 0)}{(\frac{1}{2}x^{2} + \frac{1}{2}a)}))}{100(\frac{1}{2}x^{2} + \frac{1}{2}a)^{2}} + \frac{143(\frac{-(\frac{1}{2}*2x + 0)}{(\frac{1}{2}x^{2} + \frac{1}{2}a)^{2}})(\frac{1}{2}x^{2} + \frac{1}{2}a)^{(-2a + \frac{143}{10})}}{10} + \frac{143((\frac{1}{2}x^{2} + \frac{1}{2}a)^{(-2a + \frac{143}{10})}((0 + 0)ln(\frac{1}{2}x^{2} + \frac{1}{2}a) + \frac{(-2a + \frac{143}{10})(\frac{1}{2}*2x + 0)}{(\frac{1}{2}x^{2} + \frac{1}{2}a)}))}{10(\frac{1}{2}x^{2} + \frac{1}{2}a)}\\=&\frac{-52967ax^{3}(\frac{1}{2}x^{2} + \frac{1}{2}a)^{(-2a + \frac{143}{10})}}{50(\frac{1}{2}x^{2} + \frac{1}{2}a)^{3}} - \frac{828ax(\frac{1}{2}x^{2} + \frac{1}{2}a)^{(-2a + \frac{143}{10})}}{5(\frac{1}{2}x^{2} + \frac{1}{2}a)^{2}} + \frac{798a^{2}x^{3}(\frac{1}{2}x^{2} + \frac{1}{2}a)^{(-2a + \frac{143}{10})}}{5(\frac{1}{2}x^{2} + \frac{1}{2}a)^{3}} + \frac{12a^{2}x(\frac{1}{2}x^{2} + \frac{1}{2}a)^{(-2a + \frac{143}{10})}}{(\frac{1}{2}x^{2} + \frac{1}{2}a)^{2}} - \frac{8a^{3}x^{3}(\frac{1}{2}x^{2} + \frac{1}{2}a)^{(-2a + \frac{143}{10})}}{(\frac{1}{2}x^{2} + \frac{1}{2}a)^{3}} + \frac{2339337x^{3}(\frac{1}{2}x^{2} + \frac{1}{2}a)^{(-2a + \frac{143}{10})}}{1000(\frac{1}{2}x^{2} + \frac{1}{2}a)^{3}} + \frac{57057x(\frac{1}{2}x^{2} + \frac{1}{2}a)^{(-2a + \frac{143}{10})}}{100(\frac{1}{2}x^{2} + \frac{1}{2}a)^{2}}\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( \frac{-52967ax^{3}(\frac{1}{2}x^{2} + \frac{1}{2}a)^{(-2a + \frac{143}{10})}}{50(\frac{1}{2}x^{2} + \frac{1}{2}a)^{3}} - \frac{828ax(\frac{1}{2}x^{2} + \frac{1}{2}a)^{(-2a + \frac{143}{10})}}{5(\frac{1}{2}x^{2} + \frac{1}{2}a)^{2}} + \frac{798a^{2}x^{3}(\frac{1}{2}x^{2} + \frac{1}{2}a)^{(-2a + \frac{143}{10})}}{5(\frac{1}{2}x^{2} + \frac{1}{2}a)^{3}} + \frac{12a^{2}x(\frac{1}{2}x^{2} + \frac{1}{2}a)^{(-2a + \frac{143}{10})}}{(\frac{1}{2}x^{2} + \frac{1}{2}a)^{2}} - \frac{8a^{3}x^{3}(\frac{1}{2}x^{2} + \frac{1}{2}a)^{(-2a + \frac{143}{10})}}{(\frac{1}{2}x^{2} + \frac{1}{2}a)^{3}} + \frac{2339337x^{3}(\frac{1}{2}x^{2} + \frac{1}{2}a)^{(-2a + \frac{143}{10})}}{1000(\frac{1}{2}x^{2} + \frac{1}{2}a)^{3}} + \frac{57057x(\frac{1}{2}x^{2} + \frac{1}{2}a)^{(-2a + \frac{143}{10})}}{100(\frac{1}{2}x^{2} + \frac{1}{2}a)^{2}}\right)}{dx}\\=&\frac{-52967(\frac{-3(\frac{1}{2}*2x + 0)}{(\frac{1}{2}x^{2} + \frac{1}{2}a)^{4}})ax^{3}(\frac{1}{2}x^{2} + \frac{1}{2}a)^{(-2a + \frac{143}{10})}}{50} - \frac{52967a*3x^{2}(\frac{1}{2}x^{2} + \frac{1}{2}a)^{(-2a + \frac{143}{10})}}{50(\frac{1}{2}x^{2} + \frac{1}{2}a)^{3}} - \frac{52967ax^{3}((\frac{1}{2}x^{2} + \frac{1}{2}a)^{(-2a + \frac{143}{10})}((0 + 0)ln(\frac{1}{2}x^{2} + \frac{1}{2}a) + \frac{(-2a + \frac{143}{10})(\frac{1}{2}*2x + 0)}{(\frac{1}{2}x^{2} + \frac{1}{2}a)}))}{50(\frac{1}{2}x^{2} + \frac{1}{2}a)^{3}} - \frac{828(\frac{-2(\frac{1}{2}*2x + 0)}{(\frac{1}{2}x^{2} + \frac{1}{2}a)^{3}})ax(\frac{1}{2}x^{2} + \frac{1}{2}a)^{(-2a + \frac{143}{10})}}{5} - \frac{828a(\frac{1}{2}x^{2} + \frac{1}{2}a)^{(-2a + \frac{143}{10})}}{5(\frac{1}{2}x^{2} + \frac{1}{2}a)^{2}} - \frac{828ax((\frac{1}{2}x^{2} + \frac{1}{2}a)^{(-2a + \frac{143}{10})}((0 + 0)ln(\frac{1}{2}x^{2} + \frac{1}{2}a) + \frac{(-2a + \frac{143}{10})(\frac{1}{2}*2x + 0)}{(\frac{1}{2}x^{2} + \frac{1}{2}a)}))}{5(\frac{1}{2}x^{2} + \frac{1}{2}a)^{2}} + \frac{798(\frac{-3(\frac{1}{2}*2x + 0)}{(\frac{1}{2}x^{2} + \frac{1}{2}a)^{4}})a^{2}x^{3}(\frac{1}{2}x^{2} + \frac{1}{2}a)^{(-2a + \frac{143}{10})}}{5} + \frac{798a^{2}*3x^{2}(\frac{1}{2}x^{2} + \frac{1}{2}a)^{(-2a + \frac{143}{10})}}{5(\frac{1}{2}x^{2} + \frac{1}{2}a)^{3}} + \frac{798a^{2}x^{3}((\frac{1}{2}x^{2} + \frac{1}{2}a)^{(-2a + \frac{143}{10})}((0 + 0)ln(\frac{1}{2}x^{2} + \frac{1}{2}a) + \frac{(-2a + \frac{143}{10})(\frac{1}{2}*2x + 0)}{(\frac{1}{2}x^{2} + \frac{1}{2}a)}))}{5(\frac{1}{2}x^{2} + \frac{1}{2}a)^{3}} + 12(\frac{-2(\frac{1}{2}*2x + 0)}{(\frac{1}{2}x^{2} + \frac{1}{2}a)^{3}})a^{2}x(\frac{1}{2}x^{2} + \frac{1}{2}a)^{(-2a + \frac{143}{10})} + \frac{12a^{2}(\frac{1}{2}x^{2} + \frac{1}{2}a)^{(-2a + \frac{143}{10})}}{(\frac{1}{2}x^{2} + \frac{1}{2}a)^{2}} + \frac{12a^{2}x((\frac{1}{2}x^{2} + \frac{1}{2}a)^{(-2a + \frac{143}{10})}((0 + 0)ln(\frac{1}{2}x^{2} + \frac{1}{2}a) + \frac{(-2a + \frac{143}{10})(\frac{1}{2}*2x + 0)}{(\frac{1}{2}x^{2} + \frac{1}{2}a)}))}{(\frac{1}{2}x^{2} + \frac{1}{2}a)^{2}} - 8(\frac{-3(\frac{1}{2}*2x + 0)}{(\frac{1}{2}x^{2} + \frac{1}{2}a)^{4}})a^{3}x^{3}(\frac{1}{2}x^{2} + \frac{1}{2}a)^{(-2a + \frac{143}{10})} - \frac{8a^{3}*3x^{2}(\frac{1}{2}x^{2} + \frac{1}{2}a)^{(-2a + \frac{143}{10})}}{(\frac{1}{2}x^{2} + \frac{1}{2}a)^{3}} - \frac{8a^{3}x^{3}((\frac{1}{2}x^{2} + \frac{1}{2}a)^{(-2a + \frac{143}{10})}((0 + 0)ln(\frac{1}{2}x^{2} + \frac{1}{2}a) + \frac{(-2a + \frac{143}{10})(\frac{1}{2}*2x + 0)}{(\frac{1}{2}x^{2} + \frac{1}{2}a)}))}{(\frac{1}{2}x^{2} + \frac{1}{2}a)^{3}} + \frac{2339337(\frac{-3(\frac{1}{2}*2x + 0)}{(\frac{1}{2}x^{2} + \frac{1}{2}a)^{4}})x^{3}(\frac{1}{2}x^{2} + \frac{1}{2}a)^{(-2a + \frac{143}{10})}}{1000} + \frac{2339337*3x^{2}(\frac{1}{2}x^{2} + \frac{1}{2}a)^{(-2a + \frac{143}{10})}}{1000(\frac{1}{2}x^{2} + \frac{1}{2}a)^{3}} + \frac{2339337x^{3}((\frac{1}{2}x^{2} + \frac{1}{2}a)^{(-2a + \frac{143}{10})}((0 + 0)ln(\frac{1}{2}x^{2} + \frac{1}{2}a) + \frac{(-2a + \frac{143}{10})(\frac{1}{2}*2x + 0)}{(\frac{1}{2}x^{2} + \frac{1}{2}a)}))}{1000(\frac{1}{2}x^{2} + \frac{1}{2}a)^{3}} + \frac{57057(\frac{-2(\frac{1}{2}*2x + 0)}{(\frac{1}{2}x^{2} + \frac{1}{2}a)^{3}})x(\frac{1}{2}x^{2} + \frac{1}{2}a)^{(-2a + \frac{143}{10})}}{100} + \frac{57057(\frac{1}{2}x^{2} + \frac{1}{2}a)^{(-2a + \frac{143}{10})}}{100(\frac{1}{2}x^{2} + \frac{1}{2}a)^{2}} + \frac{57057x((\frac{1}{2}x^{2} + \frac{1}{2}a)^{(-2a + \frac{143}{10})}((0 + 0)ln(\frac{1}{2}x^{2} + \frac{1}{2}a) + \frac{(-2a + \frac{143}{10})(\frac{1}{2}*2x + 0)}{(\frac{1}{2}x^{2} + \frac{1}{2}a)}))}{100(\frac{1}{2}x^{2} + \frac{1}{2}a)^{2}}\\=&\frac{-2081152ax^{4}(\frac{1}{2}x^{2} + \frac{1}{2}a)^{(-2a + \frac{143}{10})}}{125(\frac{1}{2}x^{2} + \frac{1}{2}a)^{4}} - \frac{158901ax^{2}(\frac{1}{2}x^{2} + \frac{1}{2}a)^{(-2a + \frac{143}{10})}}{25(\frac{1}{2}x^{2} + \frac{1}{2}a)^{3}} + \frac{98054a^{2}x^{4}(\frac{1}{2}x^{2} + \frac{1}{2}a)^{(-2a + \frac{143}{10})}}{25(\frac{1}{2}x^{2} + \frac{1}{2}a)^{4}} - \frac{828a(\frac{1}{2}x^{2} + \frac{1}{2}a)^{(-2a + \frac{143}{10})}}{5(\frac{1}{2}x^{2} + \frac{1}{2}a)^{2}} + \frac{4788a^{2}x^{2}(\frac{1}{2}x^{2} + \frac{1}{2}a)^{(-2a + \frac{143}{10})}}{5(\frac{1}{2}x^{2} + \frac{1}{2}a)^{3}} - \frac{2048a^{3}x^{4}(\frac{1}{2}x^{2} + \frac{1}{2}a)^{(-2a + \frac{143}{10})}}{5(\frac{1}{2}x^{2} + \frac{1}{2}a)^{4}} + \frac{12a^{2}(\frac{1}{2}x^{2} + \frac{1}{2}a)^{(-2a + \frac{143}{10})}}{(\frac{1}{2}x^{2} + \frac{1}{2}a)^{2}} - \frac{48a^{3}x^{2}(\frac{1}{2}x^{2} + \frac{1}{2}a)^{(-2a + \frac{143}{10})}}{(\frac{1}{2}x^{2} + \frac{1}{2}a)^{3}} + \frac{16a^{4}x^{4}(\frac{1}{2}x^{2} + \frac{1}{2}a)^{(-2a + \frac{143}{10})}}{(\frac{1}{2}x^{2} + \frac{1}{2}a)^{4}} + \frac{264345081x^{4}(\frac{1}{2}x^{2} + \frac{1}{2}a)^{(-2a + \frac{143}{10})}}{10000(\frac{1}{2}x^{2} + \frac{1}{2}a)^{4}} + \frac{7018011x^{2}(\frac{1}{2}x^{2} + \frac{1}{2}a)^{(-2a + \frac{143}{10})}}{500(\frac{1}{2}x^{2} + \frac{1}{2}a)^{3}} + \frac{57057(\frac{1}{2}x^{2} + \frac{1}{2}a)^{(-2a + \frac{143}{10})}}{100(\frac{1}{2}x^{2} + \frac{1}{2}a)^{2}}\\ \end{split}\end{equation} \]



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。