There are 1 questions in this calculation: for each question, the 1 derivative of n is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (27n - 27){(sqrt(n - 4 + \frac{14}{n}))}^{5} - (27{n}^{2} - 99n + 180){(sqrt(n - 4 + \frac{14}{n}))}^{3} - (52n - 16)(n - 4 + \frac{14}{n}) + (36{n}^{2} - 228n + 288)(sqrt(n - 4 + \frac{14}{n})) + 16{n}^{2} - 96n + 128\ with\ respect\ to\ n:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 27nsqrt(n + \frac{14}{n} - 4)^{5} - 27sqrt(n + \frac{14}{n} - 4)^{5} - 27n^{2}sqrt(n + \frac{14}{n} - 4)^{3} + 99nsqrt(n + \frac{14}{n} - 4)^{3} - 180sqrt(n + \frac{14}{n} - 4)^{3} + 36n^{2}sqrt(n + \frac{14}{n} - 4) - 228nsqrt(n + \frac{14}{n} - 4) - 36n^{2} + \frac{224}{n} + 128n + 288sqrt(n + \frac{14}{n} - 4) - 664\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 27nsqrt(n + \frac{14}{n} - 4)^{5} - 27sqrt(n + \frac{14}{n} - 4)^{5} - 27n^{2}sqrt(n + \frac{14}{n} - 4)^{3} + 99nsqrt(n + \frac{14}{n} - 4)^{3} - 180sqrt(n + \frac{14}{n} - 4)^{3} + 36n^{2}sqrt(n + \frac{14}{n} - 4) - 228nsqrt(n + \frac{14}{n} - 4) - 36n^{2} + \frac{224}{n} + 128n + 288sqrt(n + \frac{14}{n} - 4) - 664\right)}{dn}\\=&27sqrt(n + \frac{14}{n} - 4)^{5} + \frac{27n*5(n + \frac{14}{n} - 4)^{2}(1 + \frac{14*-1}{n^{2}} + 0)*\frac{1}{2}}{(n + \frac{14}{n} - 4)^{\frac{1}{2}}} - \frac{27*5(n + \frac{14}{n} - 4)^{2}(1 + \frac{14*-1}{n^{2}} + 0)*\frac{1}{2}}{(n + \frac{14}{n} - 4)^{\frac{1}{2}}} - 27*2nsqrt(n + \frac{14}{n} - 4)^{3} - \frac{27n^{2}*3(n + \frac{14}{n} - 4)(1 + \frac{14*-1}{n^{2}} + 0)*\frac{1}{2}}{(n + \frac{14}{n} - 4)^{\frac{1}{2}}} + 99sqrt(n + \frac{14}{n} - 4)^{3} + \frac{99n*3(n + \frac{14}{n} - 4)(1 + \frac{14*-1}{n^{2}} + 0)*\frac{1}{2}}{(n + \frac{14}{n} - 4)^{\frac{1}{2}}} - \frac{180*3(n + \frac{14}{n} - 4)(1 + \frac{14*-1}{n^{2}} + 0)*\frac{1}{2}}{(n + \frac{14}{n} - 4)^{\frac{1}{2}}} + 36*2nsqrt(n + \frac{14}{n} - 4) + \frac{36n^{2}(1 + \frac{14*-1}{n^{2}} + 0)*\frac{1}{2}}{(n + \frac{14}{n} - 4)^{\frac{1}{2}}} - 228sqrt(n + \frac{14}{n} - 4) - \frac{228n(1 + \frac{14*-1}{n^{2}} + 0)*\frac{1}{2}}{(n + \frac{14}{n} - 4)^{\frac{1}{2}}} - 36*2n + \frac{224*-1}{n^{2}} + 128 + \frac{288(1 + \frac{14*-1}{n^{2}} + 0)*\frac{1}{2}}{(n + \frac{14}{n} - 4)^{\frac{1}{2}}} + 0\\=&27sqrt(n + \frac{14}{n} - 4)^{5} + \frac{135(n + \frac{14}{n} - 4)^{\frac{3}{2}}n}{2} - \frac{945(n + \frac{14}{n} - 4)^{\frac{3}{2}}}{n} + \frac{945(n + \frac{14}{n} - 4)^{\frac{3}{2}}}{n^{2}} - \frac{81n^{3}}{2(n + \frac{14}{n} - 4)^{\frac{1}{2}}} - 54nsqrt(n + \frac{14}{n} - 4)^{3} - \frac{978n}{(n + \frac{14}{n} - 4)^{\frac{1}{2}}} + \frac{17850}{(n + \frac{14}{n} - 4)^{\frac{1}{2}}n} + \frac{657n^{2}}{2(n + \frac{14}{n} - 4)^{\frac{1}{2}}} - \frac{46242}{(n + \frac{14}{n} - 4)^{\frac{1}{2}}n^{2}} + \frac{52920}{(n + \frac{14}{n} - 4)^{\frac{1}{2}}n^{3}} + 99sqrt(n + \frac{14}{n} - 4)^{3} - \frac{135(n + \frac{14}{n} - 4)^{\frac{3}{2}}}{2} - \frac{1296}{(n + \frac{14}{n} - 4)^{\frac{1}{2}}} + 72nsqrt(n + \frac{14}{n} - 4) - 228sqrt(n + \frac{14}{n} - 4) - 72n - \frac{224}{n^{2}} + 128\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!