Mathematics
语言:中文
Language:English

current location:Mathematical operation > History of Inequality Computation > Answer
    Overview: 1 questions will be solved this time.Among them
           ☆1 inequalities

[ 1/1Inequality]
    Assignment:Find the solution set of inequality sqrt(ln((sin(1/x)+lg(tanx+e3))/cosx)) >e .
    Question type: Inequality
    Solution:
    The inequality can be reduced to 1 inequality:
         sqrt ( ln ( ( sin ( 1 / x ) + lg ( tan x + e 3 ) ) / cos x ) ) > e         (1)
        From the definition field of divisor
        x ≠ 0        (2 )
        From the definition field of lg
         tan x + e 3 > 0        (3 )
        From the definition field of ln
         ( sin ( 1 / x ) + lg ( tan x + e 3 ) ) / cos x > 0        (4 )
        From the definition field of √
         ln ( ( sin ( 1 / x ) + lg ( tan x + e 3 ) ) / cos x ) ≥ 0        (5 )

    From inequality(1):
         x > 23.614357
    From inequality(2):
         x < 0 或  x > 0
    From inequality(3):
         x < -14.087421 或  -7.804236 < x < -4.712389 或  1.620542 < x < 4.712389 或  x > 10.995574
    From inequality(4):
         -7.80068 < x < -4.658248 或  -1.50822 < x < 1.621204 或  4.763714 < x < 7.905648 或  11.047413 < x < 14.189108
    From inequality(5):
         -1.505443 ≤ x ≤ -1.087832 或  -0.360426 ≤ x ≤ -0.151528 或  -0.151528 ≤ x ≤ 0.285804 或  x ≥ 23.614357

    From inequalities (1) and (2)
         x > 23.614357    (6)
    From inequalities (3) and (6)
         x > 23.614357    (7)
    From inequalities (4) and (7)
        x ∈ Φ (Φ is empty)that is, the inequality will never be estatlished within the real number range!    (8)
    From inequalities (5) and (8)
        x ∈ Φ (Φ is empty)that is, the inequality will never be estatlished within the real number range!    (9)

    The final solution set is :

        x ∈ Φ (Φ is empty)that is, the inequality will never be estatlished within the real number range!

    *Note: Radian.



Your problem has not been solved here? Please take a look at the  hot problems !


Return