Mathematics
语言:中文
Language:English

current location:Mathematical operation > History of Inequality Computation > Answer
    Overview: 1 questions will be solved this time.Among them
           ☆1 inequalities

[ 1/1Inequality]
    Assignment:Find the solution set of inequality 1/(1+a)/(1+a) ≥4*a*a/(9*a*a-9) .
    Question type: Inequality
    Solution:
    The inequality can be reduced to 1 inequality:
        1 / ( 1 + a ) / ( 1 + a ) ≥4 * a * a / ( 9 * a * a - 9 )         (1)
        From the definition field of divisor
         1 + x ≠ 0        (2 )
        From the definition field of divisor
         1 + x ≠ 0        (3 )
        From the definition field of divisor
         9 * x * x - 9 ≠ 0        (4 )

    From inequality(1):
         -2.358494 ≤ a ≤ 1
    From inequality(2):
         a < -1 或  a > -1
    From inequality(3):
         a < -1 或  a > -1
    From inequality(4):
         a < -1 或  -1 < a < 1 或  a > 1

    From inequalities (1) and (2)
         -2.358494 ≤ a < -1 或  -1 < a ≤ 1     (5)
    From inequalities (3) and (5)
         -2.358494 ≤ a < -1 或  -1 < a ≤ 1     (6)
    From inequalities (4) and (6)
         -2.358494 ≤ a < -1 或  -1 < a < 1     (7)

    The final solution set is :

         -2.358494 ≤ a < -1 或  -1 < a < 1




Your problem has not been solved here? Please take a look at the  hot problems !


Return