Mathematics
语言:中文
Language:English

current location:Mathematical operation > History of Inequality Computation > Answer
    Overview: 1 questions will be solved this time.Among them
           ☆1 inequalities

[ 1/1Inequality]
    Assignment:Find the solution set of inequality (0.05*0.05*q*q)/(1+sqrt(1+0.05*0.05*q*q))^2 >0.9 .
    Question type: Inequality
    Solution:
    The inequality can be reduced to 1 inequality:
         ( 0.05 * 0.05 * q * q ) / ( 1 + sqrt ( 1 + 0.05 * 0.05 * q * q ) ) ^ 2 >0.9         (1)
        From the definition field of √
         1 + 0.05 * 0.05 * x * x ≥ 0        (2 )
        From the definition field of divisor
         1 + sqrt ( 1 + 0.05 * 0.05 * x * x ) ≠ 0        (3 )

    From inequality(1):
         q < -379.473319 或  q > 379473319/1000000
    From inequality(2):
         q ∈ R (R is all real numbers),that is, in the real number range, the inequality is always established!
    From inequality(3):
         q ∈ R (R为全体实数),即在实数范围内,不等式恒成立!

    From inequalities (1) and (2)
         q < -379.473319 或  q > 379473319/1000000    (4)
    From inequalities (3) and (4)
         q < -379.473319 或  q > 379473319/1000000    (5)

    The final solution set is :

         q < -379.473319 或  q > 379473319/1000000




Your problem has not been solved here? Please take a look at the  hot problems !


Return