Mathematics
语言:中文
Language:English

current location:Mathematical operation > History of Inequality Computation > Answer
    Overview: 1 questions will be solved this time.Among them
           ☆1 inequalities

[ 1/1Inequality]
    Assignment:Find the solution set of inequality 1/6*{1+[1-(1-a)^6]*(24*a+10)/(2+3*a)} <1/4*{1+[1-(1-a)^4]*(8*a+8)/(2+a)} .
    Question type: Inequality
    Solution:
    The inequality can be reduced to 1 inequality:
        1 / 6 * ( 1 + ( 1 - ( 1 - a ) ^ 6 ) * ( 24 * a + 10 ) / ( 2 + 3 * a ) ) <1 / 4 * ( 1 + ( 1 - ( 1 - a ) ^ 4 ) * ( 8 * a + 8 ) / ( 2 + a ) )         (1)
        From the definition field of divisor
         2 + 3 * x ≠ 0        (2 )
        From the definition field of divisor
         2 + x ≠ 0        (3 )

    From inequality(1):
         a < -2.147266 或  -2 < a < -0.666667 或  a > -0.323258
    From inequality(2):
         a < -2/3 或  a > -2/3
    From inequality(3):
         a < -2 或  a > -2

    From inequalities (1) and (2)
         a < -2.147266 或  -2 < a < -0.666667 或  a > -0.323258    (4)
    From inequalities (3) and (4)
         a < -2.147266 或  -2 < a < -0.666667 或  a > -0.323258    (5)

    The final solution set is :

         a < -2.147266 或  -2 < a < -0.666667 或  a > -0.323258




Your problem has not been solved here? Please take a look at the  hot problems !


Return