Mathematics
语言:中文
Language:English

current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer
    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation (3n+1)(3n+2)(6n+3)(9n+4) = (3n+4)(3n+1)(6n+2)(9n+3) .
    Question type: Equation
    Solution:Original question:
     (3 n + 1)(3 n + 2)(6 n + 3)(9 n + 4) = (3 n + 4)(3 n + 1)(6 n + 2)(9 n + 3)
    Remove the bracket on the left of the equation:
     Left side of the equation = 3 n (3 n + 2)(6 n + 3)(9 n + 4) + 1(3 n + 2)(6 n + 3)(9 n + 4)
                                             = 3 n × 3 n (6 n + 3)(9 n + 4) + 3 n × 2(6 n + 3)(9 n + 4) + 1
                                             = 9 n n (6 n + 3)(9 n + 4) + 6 n (6 n + 3)(9 n + 4) + 1(3 n + 2)(6 n + 3)
                                             = 9 n n × 6 n (9 n + 4) + 9 n n × 3(9 n + 4) + 6
                                             = 54 n n n (9 n + 4) + 27 n n (9 n + 4) + 6 n (6 n + 3)
                                             = 54 n n n × 9 n + 54 n n n × 4 + 27
                                             = 486 n n n n + 216 n n n + 27 n n
                                             = 486 n n n n + 216 n n n + 27 n n
                                             = 486 n n n n + 216 n n n + 243 n n
                                             = 486 n n n n + 216 n n n + 243 n n
                                             = 486 n n n n + 216 n n n + 243 n n
                                             = 486 n n n n + 216 n n n + 243 n n
                                             = 486 n n n n + 216 n n n + 243 n n
                                             = 486 n n n n + 216 n n n + 243 n n
                                             = 486 n n n n + 216 n n n + 243 n n
                                             = 486 n n n n + 216 n n n + 243 n n
                                             = 486 n n n n + 216 n n n + 243 n n
                                             = 486 n n n n + 216 n n n + 243 n n
                                             = 486 n n n n + 216 n n n + 243 n n
                                             = 486 n n n n + 216 n n n + 243 n n
                                             = 486 n n n n + 216 n n n + 243 n n
                                             = 486 n n n n + 216 n n n + 243 n n
                                             = 486 n n n n + 216 n n n + 243 n n
                                             = 486 n n n n + 216 n n n + 243 n n
                                             = 486 n n n n + 216 n n n + 243 n n

    
        n=0
    
    There are 1 solution(s).


解一元一次方程的详细方法请参阅:《一元一次方程的解法》




Your problem has not been solved here? Please take a look at the  hot problems !


Return