| - | 1169 10 | + | 96 5 | ( | 1 | − | 1 | ÷ | ( | 1 | + | x | ) | ) | ÷ | x | − | 9 5 | ÷ | ( | x | ( | 1 | + | x | ) | ) | = | 0 |
| Multiply both sides of the equation by: | x |
| - | 1169 10 | x | + | 96 5 | ( | 1 | − | 1 | ÷ | ( | 1 | + | x | ) | ) | − | 9 5 | ÷ | ( | 1 | ( | 1 | + | x | ) | ) | × | 1 | = | 0 |
| - | 1169 10 | x | + | 96 5 | × | 1 | − | 96 5 | × | 1 | ÷ | ( | 1 | + | x | ) | − | 9 5 | ÷ | ( | 1 | ( | 1 | + | x | ) | ) | × | 1 | = | 0 |
| - | 1169 10 | x | + | 96 5 | − | 96 5 | ÷ | ( | 1 | + | x | ) | − | 9 5 | ÷ | ( | 1 | ( | 1 | + | x | ) | ) | = | 0 |
| Multiply both sides of the equation by: | ( | 1 | + | x | ) |
| - | 1169 10 | x | ( | 1 | + | x | ) | + | 96 5 | ( | 1 | + | x | ) | − | 96 5 | − | 9 5 | ÷ | ( | 1 | ( | 1 | + | x | ) | ) | × | ( | 1 | + | x | ) | = | 0 |
| - | 1169 10 | x | × | 1 | − | 1169 10 | x | x | + | 96 5 | ( | 1 | + | x | ) | − | 96 5 | − | 9 5 | ÷ | ( | 1 | ( | 1 | + | x | ) | ) | × | ( | 1 | + | x | ) | = | 0 |
| - | 1169 10 | x | − | 1169 10 | x | x | + | 96 5 | ( | 1 | + | x | ) | − | 96 5 | − | 9 5 | ÷ | ( | 1 | ( | 1 | + | x | ) | ) | × | ( | 1 | + | x | ) | = | 0 |
| Multiply both sides of the equation by: | ( | 1 | ( | 1 | + | x | ) | ) |
| - | 1169 10 | x | ( | 1 | ( | 1 | + | x | ) | ) | − | 1169 10 | x | x | ( | 1 | ( | 1 | + | x | ) | ) | + | 96 5 | ( | 1 | + | x | ) | ( | 1 | ( | 1 | + | x | ) | ) | − | 96 5 | ( | 1 | ( | 1 | + | x | ) | ) | = | 0 |
| - | 1169 10 | x | × | 1 | ( | 1 | + | x | ) | − | 1169 10 | x | x | ( | 1 | ( | 1 | + | x | ) | ) | + | 96 5 | ( | 1 | + | x | ) | ( | 1 | ( | 1 | + | x | ) | ) | − | 96 5 | = | 0 |
| - | 1169 10 | x | ( | 1 | + | x | ) | − | 1169 10 | x | x | ( | 1 | ( | 1 | + | x | ) | ) | + | 96 5 | ( | 1 | + | x | ) | ( | 1 | ( | 1 | + | x | ) | ) | − | 96 5 | ( | 1 | ( | 1 | + | x | ) | ) | = | 0 |
| - | 1169 10 | x | × | 1 | − | 1169 10 | x | x | − | 1169 10 | x | x | ( | 1 | ( | 1 | + | x | ) | ) | + | 96 5 | ( | 1 | + | x | ) | = | 0 |
| - | 1169 10 | x | − | 1169 10 | x | x | − | 1169 10 | x | x | ( | 1 | ( | 1 | + | x | ) | ) | + | 96 5 | ( | 1 | + | x | ) | ( | 1 | ( | 1 | + | x | ) | ) | = | 0 |
| - | 1169 10 | x | − | 1169 10 | x | x | − | 1169 10 | x | x | × | 1 | ( | 1 | + | x | ) | + | 96 5 | ( | 1 | + | x | ) | = | 0 |
| - | 1169 10 | x | − | 1169 10 | x | x | − | 1169 10 | x | x | ( | 1 | + | x | ) | + | 96 5 | ( | 1 | + | x | ) | ( | 1 | ( | 1 | + | x | ) | ) | = | 0 |
| - | 1169 10 | x | − | 1169 10 | x | x | − | 1169 10 | x | x | × | 1 | − | 1169 10 | x | x | = | 0 |
| - | 1169 10 | x | − | 1169 10 | x | x | − | 1169 10 | x | x | − | 1169 10 | x | x | x | = | 0 |
| - | 1169 10 | x | − | 1169 10 | x | x | − | 1169 10 | x | x | − | 1169 10 | x | x | x | = | 0 |
| - | 1169 10 | x | − | 1169 10 | x | x | − | 1169 10 | x | x | − | 1169 10 | x | x | x | = | 0 |
| - | 1169 10 | x | − | 1169 10 | x | x | − | 1169 10 | x | x | − | 1169 10 | x | x | x | = | 0 |
| - | 1169 10 | x | − | 1169 10 | x | x | − | 1169 10 | x | x | − | 1169 10 | x | x | x | = | 0 |
| - | 1169 10 | x | − | 1169 10 | x | x | − | 1169 10 | x | x | − | 1169 10 | x | x | x | = | 0 |
| - | 1169 10 | x | − | 1169 10 | x | x | − | 1169 10 | x | x | − | 1169 10 | x | x | x | = | 0 |
| - | 977 10 | x | − | 1169 10 | x | x | − | 1169 10 | x | x | − | 1169 10 | x | x | x | = | 0 |