There are 1 questions in this calculation: for each question, the 1 derivative of b is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ be^{-a}(x - \frac{be^{-c}{e}^{2}}{2})\ with\ respect\ to\ b:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = xbe^{-a} - \frac{1}{2}b^{2}e^{-c}e^{2}e^{-a}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( xbe^{-a} - \frac{1}{2}b^{2}e^{-c}e^{2}e^{-a}\right)}{db}\\=&xe^{-a} + xbe^{-a}*0 - \frac{1}{2}*2be^{-c}e^{2}e^{-a} - \frac{1}{2}b^{2}e^{-c}*0e^{2}e^{-a} - \frac{1}{2}b^{2}e^{-c}*2e*0e^{-a} - \frac{1}{2}b^{2}e^{-c}e^{2}e^{-a}*0\\=&xe^{-a} - be^{-c}e^{2}e^{-a}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !