There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{2arctan(x)}{3} - \frac{arctan(1)}{3x}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{2}{3}arctan(x) - \frac{\frac{1}{3}arctan(1)}{x}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{2}{3}arctan(x) - \frac{\frac{1}{3}arctan(1)}{x}\right)}{dx}\\=&\frac{2}{3}(\frac{(1)}{(1 + (x)^{2})}) - \frac{\frac{1}{3}*-arctan(1)}{x^{2}} - \frac{\frac{1}{3}(\frac{(0)}{(1 + (1)^{2})})}{x}\\=&\frac{arctan(1)}{3x^{2}} + \frac{2}{3(x^{2} + 1)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !