There are 1 questions in this calculation: for each question, the 1 derivative of f is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ pln(1 + fu) + (1 - p)ln(1 - fd)\ with\ respect\ to\ f:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = pln(uf + 1) + ln(-df + 1) - pln(-df + 1)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( pln(uf + 1) + ln(-df + 1) - pln(-df + 1)\right)}{df}\\=&\frac{p(u + 0)}{(uf + 1)} + \frac{(-d + 0)}{(-df + 1)} - \frac{p(-d + 0)}{(-df + 1)}\\=&\frac{pu}{(uf + 1)} - \frac{d}{(-df + 1)} + \frac{pd}{(-df + 1)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !