There are 1 questions in this calculation: for each question, the 1 derivative of w is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ -{e}^{(-wx + b)}{({e}^{(-wx + b)} + 1)}^{2}\ with\ respect\ to\ w:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = -{e}^{(3(-xw + b))} - 2{e}^{(2(-xw + b))} - {e}^{(-xw + b)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( -{e}^{(3(-xw + b))} - 2{e}^{(2(-xw + b))} - {e}^{(-xw + b)}\right)}{dw}\\=&-({e}^{(3(-xw + b))}((3(-x + 0))ln(e) + \frac{(3(-xw + b))(0)}{(e)})) - 2({e}^{(2(-xw + b))}((2(-x + 0))ln(e) + \frac{(2(-xw + b))(0)}{(e)})) - ({e}^{(-xw + b)}((-x + 0)ln(e) + \frac{(-xw + b)(0)}{(e)}))\\=&3x{e}^{(-3xw + 3b)} + 4x{e}^{(-2xw + 2b)} + x{e}^{(-xw + b)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !