There are 1 questions in this calculation: for each question, the 1 derivative of I is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{Tln(t)}{ln(1 - \frac{v(1 - t)}{I})}\ with\ respect\ to\ I:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{Tln(t)}{ln(\frac{-v}{I} + \frac{tv}{I} + 1)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{Tln(t)}{ln(\frac{-v}{I} + \frac{tv}{I} + 1)}\right)}{dI}\\=&\frac{T*0}{(t)ln(\frac{-v}{I} + \frac{tv}{I} + 1)} + \frac{Tln(t)*-(\frac{-v*-1}{I^{2}} + \frac{tv*-1}{I^{2}} + 0)}{ln^{2}(\frac{-v}{I} + \frac{tv}{I} + 1)(\frac{-v}{I} + \frac{tv}{I} + 1)}\\=&\frac{-Tvln(t)}{(\frac{-v}{I} + \frac{tv}{I} + 1)I^{2}ln^{2}(\frac{-v}{I} + \frac{tv}{I} + 1)} + \frac{Ttvln(t)}{(\frac{-v}{I} + \frac{tv}{I} + 1)I^{2}ln^{2}(\frac{-v}{I} + \frac{tv}{I} + 1)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !