There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ sin(\frac{π{\frac{1}{e}}^{x}}{2})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = sin(\frac{1}{2}π{\frac{1}{e}}^{x})\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( sin(\frac{1}{2}π{\frac{1}{e}}^{x})\right)}{dx}\\=&cos(\frac{1}{2}π{\frac{1}{e}}^{x})*\frac{1}{2}π({\frac{1}{e}}^{x}((1)ln(\frac{1}{e}) + \frac{(x)(\frac{-0}{e^{2}})}{(\frac{1}{e})}))\\=&\frac{-π{\frac{1}{e}}^{x}cos(\frac{1}{2}π{\frac{1}{e}}^{x})}{2}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !