There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ {x}^{2}{e^{x}}^{2}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x^{2}e^{{x}*{2}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x^{2}e^{{x}*{2}}\right)}{dx}\\=&2xe^{{x}*{2}} + x^{2}*2e^{x}e^{x}\\=&2xe^{{x}*{2}} + 2x^{2}e^{{x}*{2}}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 2xe^{{x}*{2}} + 2x^{2}e^{{x}*{2}}\right)}{dx}\\=&2e^{{x}*{2}} + 2x*2e^{x}e^{x} + 2*2xe^{{x}*{2}} + 2x^{2}*2e^{x}e^{x}\\=&2e^{{x}*{2}} + 8xe^{{x}*{2}} + 4x^{2}e^{{x}*{2}}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( 2e^{{x}*{2}} + 8xe^{{x}*{2}} + 4x^{2}e^{{x}*{2}}\right)}{dx}\\=&2*2e^{x}e^{x} + 8e^{{x}*{2}} + 8x*2e^{x}e^{x} + 4*2xe^{{x}*{2}} + 4x^{2}*2e^{x}e^{x}\\=&12e^{{x}*{2}} + 24xe^{{x}*{2}} + 8x^{2}e^{{x}*{2}}\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( 12e^{{x}*{2}} + 24xe^{{x}*{2}} + 8x^{2}e^{{x}*{2}}\right)}{dx}\\=&12*2e^{x}e^{x} + 24e^{{x}*{2}} + 24x*2e^{x}e^{x} + 8*2xe^{{x}*{2}} + 8x^{2}*2e^{x}e^{x}\\=&48e^{{x}*{2}} + 64xe^{{x}*{2}} + 16x^{2}e^{{x}*{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !