There are 1 questions in this calculation: for each question, the 1 derivative of t is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(3 - 3{t}^{2})}{(2 + 2{t}^{2})}\ with\ respect\ to\ t:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = - \frac{3t^{2}}{(2t^{2} + 2)} + \frac{3}{(2t^{2} + 2)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( - \frac{3t^{2}}{(2t^{2} + 2)} + \frac{3}{(2t^{2} + 2)}\right)}{dt}\\=& - 3(\frac{-(2*2t + 0)}{(2t^{2} + 2)^{2}})t^{2} - \frac{3*2t}{(2t^{2} + 2)} + 3(\frac{-(2*2t + 0)}{(2t^{2} + 2)^{2}})\\=&\frac{12t^{3}}{(2t^{2} + 2)^{2}} - \frac{6t}{(2t^{2} + 2)} - \frac{12t}{(2t^{2} + 2)^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !