Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ ({x}^{3}){e}^{2}x\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x^{4}e^{2}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x^{4}e^{2}\right)}{dx}\\=&4x^{3}e^{2} + x^{4}*2e*0\\=&4x^{3}e^{2}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 4x^{3}e^{2}\right)}{dx}\\=&4*3x^{2}e^{2} + 4x^{3}*2e*0\\=&12x^{2}e^{2}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( 12x^{2}e^{2}\right)}{dx}\\=&12*2xe^{2} + 12x^{2}*2e*0\\=&24xe^{2}\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( 24xe^{2}\right)}{dx}\\=&24e^{2} + 24x*2e*0\\=&24e^{2}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return