There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ rcos(wx) + l{(1 - {(\frac{rsin(wx)}{l})}^{2})}^{\frac{1}{2}}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = rcos(wx) + (\frac{-r^{2}sin^{2}(wx)}{l^{2}} + 1)^{\frac{1}{2}}l\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( rcos(wx) + (\frac{-r^{2}sin^{2}(wx)}{l^{2}} + 1)^{\frac{1}{2}}l\right)}{dx}\\=&r*-sin(wx)w + (\frac{\frac{1}{2}(\frac{-r^{2}*2sin(wx)cos(wx)w}{l^{2}} + 0)}{(\frac{-r^{2}sin^{2}(wx)}{l^{2}} + 1)^{\frac{1}{2}}})l + 0\\=&-rwsin(wx) - \frac{r^{2}wsin(wx)cos(wx)}{(\frac{-r^{2}sin^{2}(wx)}{l^{2}} + 1)^{\frac{1}{2}}l}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !