There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{1000{x}^{2}}{((1 - x)(15 - x))}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{1000x^{2}}{(x^{2} - 16x + 15)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{1000x^{2}}{(x^{2} - 16x + 15)}\right)}{dx}\\=&1000(\frac{-(2x - 16 + 0)}{(x^{2} - 16x + 15)^{2}})x^{2} + \frac{1000*2x}{(x^{2} - 16x + 15)}\\=&\frac{-2000x^{3}}{(x^{2} - 16x + 15)^{2}} + \frac{16000x^{2}}{(x^{2} - 16x + 15)^{2}} + \frac{2000x}{(x^{2} - 16x + 15)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !