Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ ({(sin(x))}^{x})cos(nx)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = {sin(x)}^{x}cos(nx)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {sin(x)}^{x}cos(nx)\right)}{dx}\\=&({sin(x)}^{x}((1)ln(sin(x)) + \frac{(x)(cos(x))}{(sin(x))}))cos(nx) + {sin(x)}^{x}*-sin(nx)n\\=&{sin(x)}^{x}ln(sin(x))cos(nx) + \frac{x{sin(x)}^{x}cos(x)cos(nx)}{sin(x)} - n{sin(x)}^{x}sin(nx)\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return