There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ log_{a}^{2{x}^{2}} + {a}^{sin(1 - x)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = log_{a}^{2x^{2}} + {a}^{sin(-x + 1)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( log_{a}^{2x^{2}} + {a}^{sin(-x + 1)}\right)}{dx}\\=&(\frac{(\frac{(2*2x)}{(2x^{2})} - \frac{(0)log_{a}^{2x^{2}}}{(a)})}{(ln(a))}) + ({a}^{sin(-x + 1)}((cos(-x + 1)(-1 + 0))ln(a) + \frac{(sin(-x + 1))(0)}{(a)}))\\=&\frac{2}{xln(a)} - {a}^{sin(-x + 1)}ln(a)cos(-x + 1)\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !