There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ arctan({e}^{s}prt(x + 1))\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = arctan(prtx{e}^{s} + prt{e}^{s})\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( arctan(prtx{e}^{s} + prt{e}^{s})\right)}{dx}\\=&(\frac{(prt{e}^{s} + prtx({e}^{s}((0)ln(e) + \frac{(s)(0)}{(e)})) + prt({e}^{s}((0)ln(e) + \frac{(s)(0)}{(e)})))}{(1 + (prtx{e}^{s} + prt{e}^{s})^{2})})\\=&\frac{prt{e}^{s}}{(p^{2}r^{2}t^{2}x^{2}{e}^{(2s)} + 2p^{2}r^{2}t^{2}x{e}^{(2s)} + p^{2}r^{2}t^{2}{e}^{(2s)} + 1)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !