There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ {x}^{2} + \frac{2}{x}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x^{2} + \frac{2}{x}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x^{2} + \frac{2}{x}\right)}{dx}\\=&2x + \frac{2*-1}{x^{2}}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 2x - \frac{2}{x^{2}}\right)}{dx}\\=&2 - \frac{2*-2}{x^{3}}\\=&\frac{4}{x^{3}} + 2\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( \frac{4}{x^{3}} + 2\right)}{dx}\\=&\frac{4*-3}{x^{4}} + 0\\=& - \frac{12}{x^{4}}\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( - \frac{12}{x^{4}}\right)}{dx}\\=& - \frac{12*-4}{x^{5}}\\=&\frac{48}{x^{5}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !