Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ -8sin(2)(x)cos(2)(x) - 6sin(4)(x)cos(4)(x) - 2\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = -8x^{2}sin(2)cos(2) - 6x^{2}sin(4)cos(4) - 2\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( -8x^{2}sin(2)cos(2) - 6x^{2}sin(4)cos(4) - 2\right)}{dx}\\=&-8*2xsin(2)cos(2) - 8x^{2}cos(2)*0cos(2) - 8x^{2}sin(2)*-sin(2)*0 - 6*2xsin(4)cos(4) - 6x^{2}cos(4)*0cos(4) - 6x^{2}sin(4)*-sin(4)*0 + 0\\=&-16xsin(2)cos(2) - 12xsin(4)cos(4)\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( -16xsin(2)cos(2) - 12xsin(4)cos(4)\right)}{dx}\\=&-16sin(2)cos(2) - 16xcos(2)*0cos(2) - 16xsin(2)*-sin(2)*0 - 12sin(4)cos(4) - 12xcos(4)*0cos(4) - 12xsin(4)*-sin(4)*0\\=&-16sin(2)cos(2) - 12sin(4)cos(4)\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return