数学
手机端

语言:中文
Language:English






当前位置:求导函数 > 导函数计算历史 > 答案
    本次共计算 1 个题目:每一题对 x 求 2 阶导数。
    注意,变量是区分大小写的。
\[ \begin{equation}\begin{split}【1/1】求函数-8sin(2)(x)cos(2)(x) - 6sin(4)(x)cos(4)(x) - 2 关于 x 的 2 阶导数:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = -8x^{2}sin(2)cos(2) - 6x^{2}sin(4)cos(4) - 2\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( -8x^{2}sin(2)cos(2) - 6x^{2}sin(4)cos(4) - 2\right)}{dx}\\=&-8*2xsin(2)cos(2) - 8x^{2}cos(2)*0cos(2) - 8x^{2}sin(2)*-sin(2)*0 - 6*2xsin(4)cos(4) - 6x^{2}cos(4)*0cos(4) - 6x^{2}sin(4)*-sin(4)*0 + 0\\=&-16xsin(2)cos(2) - 12xsin(4)cos(4)\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( -16xsin(2)cos(2) - 12xsin(4)cos(4)\right)}{dx}\\=&-16sin(2)cos(2) - 16xcos(2)*0cos(2) - 16xsin(2)*-sin(2)*0 - 12sin(4)cos(4) - 12xcos(4)*0cos(4) - 12xsin(4)*-sin(4)*0\\=&-16sin(2)cos(2) - 12sin(4)cos(4)\\ \end{split}\end{equation} \]





你的问题在这里没有得到解决?请到 热门难题 里面看看吧!


返 回