Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {x}^{(\frac{5}{3})} - \frac{{x}^{(\frac{3}{5})}}{sin(x)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = - \frac{x^{\frac{3}{5}}}{sin(x)} + x^{\frac{5}{3}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( - \frac{x^{\frac{3}{5}}}{sin(x)} + x^{\frac{5}{3}}\right)}{dx}\\=& - \frac{\frac{3}{5}}{x^{\frac{2}{5}}sin(x)} - \frac{x^{\frac{3}{5}}*-cos(x)}{sin^{2}(x)} + \frac{5}{3}x^{\frac{2}{3}}\\=&\frac{x^{\frac{3}{5}}cos(x)}{sin^{2}(x)} - \frac{3}{5x^{\frac{2}{5}}sin(x)} + \frac{5x^{\frac{2}{3}}}{3}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return