There are 1 questions in this calculation: for each question, the 3 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ third\ derivative\ of\ function\ {x}^{3}ln(x)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x^{3}ln(x)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x^{3}ln(x)\right)}{dx}\\=&3x^{2}ln(x) + \frac{x^{3}}{(x)}\\=&3x^{2}ln(x) + x^{2}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 3x^{2}ln(x) + x^{2}\right)}{dx}\\=&3*2xln(x) + \frac{3x^{2}}{(x)} + 2x\\=&6xln(x) + 5x\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( 6xln(x) + 5x\right)}{dx}\\=&6ln(x) + \frac{6x}{(x)} + 5\\=&6ln(x) + 11\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !