There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{((ln(1 + x))tan(3)x)}{(x(sin(2)x))}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{ln(x + 1)tan(3)}{xsin(2)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{ln(x + 1)tan(3)}{xsin(2)}\right)}{dx}\\=&\frac{-ln(x + 1)tan(3)}{x^{2}sin(2)} + \frac{(1 + 0)tan(3)}{x(x + 1)sin(2)} + \frac{ln(x + 1)*-cos(2)*0tan(3)}{xsin^{2}(2)} + \frac{ln(x + 1)sec^{2}(3)(0)}{xsin(2)}\\=&\frac{-ln(x + 1)tan(3)}{x^{2}sin(2)} + \frac{tan(3)}{(x + 1)xsin(2)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !