There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ (x - 2)(x - 4)(x - 6)(x - 8)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x^{4} - 20x^{3} + 140x^{2} - 400x + 384\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x^{4} - 20x^{3} + 140x^{2} - 400x + 384\right)}{dx}\\=&4x^{3} - 20*3x^{2} + 140*2x - 400 + 0\\=&4x^{3} - 60x^{2} + 280x - 400\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 4x^{3} - 60x^{2} + 280x - 400\right)}{dx}\\=&4*3x^{2} - 60*2x + 280 + 0\\=&12x^{2} - 120x + 280\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !